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Preface 
 

Optimization is important in all branches of engineering due to limited resources 
available. Through optimization, maximum usage of the resource can be achieved.  
However, global optimization can be difficult due to the requirement of the knowledge of 
the system behavior under analysis and the possible large solution space. Without this 
knowledge, the optimization thus obtained may only be a local optimization. Metaheuristic 
algorithms, on the other hand, are effective in exploring the solution space. Often, they are 
referred to as “black box” algorithms as they use very limited knowledge about the specific 
system to be tackled, and often it does not require a mathematical model of the system 
under study. Hence it can be used to solve a broad range of problem, and has thus receiving 
increasing attention.   

One of the commonly used metaheuristic algorithms is the Simulated Annealing (SA). 
SA is an optimization algorithm that is not fool by false minima and is easy to implement. It 
is also superior as compared to many other metaheuristic algorithms as presented in this 
book. In this book, the different applications of the Simulated Annealing will be presented. 
The first 11 chapters are devoted to the applications in Industrial engineering such as the 
scheduling problem, decision making, allocation problem, routing problem and general 
optimization problem. 

The subsequent chapters of this book will focus on the application of the Simulated 
Annealing in Material Engineering on porous material study, Electrical Engineering on 
integrated circuit technology, Mechanical Engineering on mechanical structure design, 
Structural Engineering on concrete structures, Computer Engineering on task mapping and 
Bio-engineering on protein structure. The last three Chapters will be on the methodology to 
optimize the Simulated Annealing, its comparison with other metaheuristic algorithms and 
the various practical considerations in the application of Simulated Annealing. 

This book provides the readers with the knowledge of Simulated Annealing and its vast 
applications in the various branches of engineering. We encourage readers to explore the 
application of Simulated Annealing in their work for the task of optimization. 

Editor 

Cher Ming Tan 
Nanyang Technological University 

Singapore 
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Simulated Annealing as an Intensification 
Component in Hybrid Population-Based 

Metaheuristics 
Davide Anghinolfi and Massimo Paolucci 

Department of Communication, Computer and Systems Sciences 
University of Genova 

Italy 

1. Introduction 
The use of hybrid metaheuristics applied to combinatorial optimization problems received a 
continuously increasing attention in the literature. Metaheuristic algorithms differ from 
most of the classical optimization techniques since they aim at defining effective general 
purpose methods to explore the solution space, avoiding to tailor them on the specific 
problem at hand. Often metaheuristics are referred to as “black-box” algorithms as they use 
limited knowledge about the specific problem to be tackled, instead usually taking 
inspiration from concepts and behaviours far from the optimization field. This is exactly the 
case of metaheuristics like simulated annealing (SA), genetic algorithm (GA), ant colony 
optimization (ACO) or particle swarm optimization (PSO). Metaheuristics are based on a 
subset of features (e.g., the use of exploration history as short or long term memory, that of 
learning mechanisms or of candidate solution generation techniques) that represent a 
general algorithm fingerprint which usually can be easily adapted to face different complex 
real world problems. The effectiveness of any metaheuristic applied to a specific 
combinatorial problem may depend on a number of factors: most of the time no single 
dominating algorithm can be identified but several distinct mechanisms exploited by 
different metaheuristics appear to be profitable for searching high quality solutions. For this 
reason a growing number of metaheuristic approaches to combinatorial problems try to put 
together several techniques and concepts from different methods in order to design new and 
highly effective algorithms. Hybrid approaches in fact usually seem both to combine 
complementary strengths and to overcome the drawbacks of single methods by embedding 
in them one or more steps based on different techniques. As an example, in (Anghinolfi & 
Paolucci, 2007a) the SA probabilistic candidate solution acceptance rule is coupled with the 
tabu list and neighbourhood change mechanisms respectively characterizing tabu search 
(TS) and variable neighbourhood search (VNS) approaches to face parallel machine total 
tardiness scheduling problems. Several surveys exist proposing both classifications of 
metaheuristics and unified views of hybrid metaheuristics (e.g., (Blum & Roli, 2003), 
(Doerner et al., 2007), (Raidl, 2006) and (Talbi, 2002)). We would avoid to replicate here the 
various definitions and classifications through which the different approaches can be 
analysed and organized (the interested reader can for example refer to (Blum & Roli, 2003) 
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for a valuable review). However, we should underline few basic concepts that allow us to 
focus on the different characteristics of the kinds of methods used in the hybrid algorithms 
presented in this chapter. SA, ACO and PSO are all stochastic algorithms, but SA is 
commonly classified as a trajectory-based method since it determines at each iteration a new 
single current solution, whereas ACO and PSO are population-based methods since they 
explore at each iteration a set of distinct solutions which they make evolve iteration after 
iteration. The concept behind these two population-based methods is that the overall 
exploration process can be improved by learning from the single exploring experiences of a 
population of very simple agents (the ants or the particles). As will be cleared in the 
following of the chapter, ACO explicitly exploits a learning mechanism in order to identify, 
iteration after iteration, which features should characterize good, i.e., the most promising, 
solutions. If in ACO the communication among the exploring agents (the ants) is indirect, 
PSO, on the other hand, drives the search of the population of agents (the swarm of 
particles) on the basis of simple pieces of information (e.g., where the current best is 
located), making the agents moving towards promising solutions. Therefore, both ACO and 
PSO use memory structures, more complex in ACO, simpler in PSO, to elaborate their 
exploration strategies; agents in ACO and PSO perform a learning or information driven 
sampling of the solution space that could in general be considered wide but also quite 
coarse, and that can be trapped in local optima (the so-called stagnation (Dorigo & Stutzle, 
2004)). SA, on the other hand, is a memoryless method which combines the local search 
aptitude of exploring in depth regions in the solution space with the ability, ruled by the 
cooling schedule mechanism, of escaping from local optima. From this brief overview the 
possible advantage of coupling the different complementary abilities of the two types of 
metaheuristics should begin to emerge. Therefore in this chapter our purpose is to focus the 
attention on hybrid population-based metaheuristic algorithms with a specific reference to 
the use of SA as a hybridizing component. Then, according to the classification proposed in 
(Raidl, 2006), the kind of hybrid algorithms here considered result from the combination of 
two distinct metaheuristics (the “what is hybridized” aspect) among which a low-level 
strong coupling is established (the “level of hybridization” aspect), in particular the 
execution of SA is interleaved with the iterations of the population-based metaheuristics 
(the “order of execution” aspect) so that SA can be viewed as an integrated component of 
these latter (the “control strategy” aspect). 
Several works recently appeared in the literature show the interest of embedding SA into 
population-based approaches as ACO, PSO and GA. Examples of PSO hybridized by 
incorporating SA intensification can be found in (Liu et al., 2008), where the proposed 
hybrid PSO (HPSO), which includes a probabilistically applied local search (LS) and a 
learning-guided multi-neighbourhood SA, is applied to makespan minimization in a 
permutation flow shop scheduling problem with the limited buffers between consecutive 
machines; in (He & Wang, 2007), where constrained optimization problems are faced by a 
HPSO which applies the SA search from the best solution found by the swarm in order to 
avoid the premature convergence; in (Li et al., 2006), where the hybrid algorithm, named  
PSOSA, is used for non-linear systems parameter estimation; in (Ge et al., 2007) where the 
HPSO is used to face the job shop scheduling. Differently, in (Xia & Wu, 2005) multi-
objective flexible job shop scheduling problems are confronted by a hierarchical approach 
exploiting PSO to assign operations to machines and then SA to schedule operations on each 
machine. Hybrid ACO approaches, which combine pheromone trail based learning 
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mechanism with the SA search ability of escaping from local optima, are proposed for 
example in (Demirel & Toksarı, 2006) for the quadratic assignment problem and in 
(Yuanjing & Zuren, 2004) for flow-shop scheduling problems. Finally, in (Yogeswaran et al., 
2007) a hybrid metaheuristic named GASA, which combines GA and SA, is used to solve a 
bi-criterion machine loading problem in flexible manufacturing system.  
In this chapter we would highlight the effectiveness of embedding a trajectory method, i.e., 
SA, as intensification method of population-based algorithms, i.e., ACO and PSO. Many 
works in the literature witnessed the fundamental role for population-based approaches, as 
ACO, PSO or GA, of an intensification phase which usually corresponds to a local search 
(LS) exploration (Blum & Roli, 2003). However, a well-known and common characteristic of 
trajectory methods, as SA, VNS or TS, is their ability of overcoming the LS limitation of 
being trapped in local optima. For this reason the role of this class of powerful methods goes 
beyond that of a local intensification procedure, since they allow the calling population-
based method to be “re-directed” towards portions of the solution space which may not be 
confined to the basin of attraction of a local optimizer. Then, we can view the hybrid 
algorithms discussed in this chapter as composed by a main population-based component 
which exploits a second level subordinate SA procedure in order to deeply explore 
(intensify) the neighbourhood of one (or more) promising solution, as well as escaping from 
such a neighbourhood when it includes a local optima attractor (diversify). On a symmetric 
standpoint, we could also consider these hybrid metaheuristics as an iterated trajectory 
method, i.e., an iterated SA, whose (promising) starting solutions are determined at the 
beginning of each iteration by a population-based algorithm. This latter algorithm in fact, 
exploiting memory and/or learning mechanisms, performs a sort of solution perturbation or 
shaking, possibly driving the SA search to focus on alternative promising regions of the 
solution space. In this case we can consider the population-based algorithm as an effective 
memory and learning based diversification device for SA. Whatever standpoint one would 
prefer, we believe that the effectiveness of the overall resulting algorithm emerges from the 
interaction of the complementary capabilities of the methods of the two different classes, 
that is, according to (He & Wang, 2007), from the balance of the intensification and 
diversification components included in them. An important aspect to be taken into account 
when designing the interaction mechanism between the population-based and the trajectory 
(i.e., SA) components of the hybrid algorithm regards how to identify the solutions which 
are worth to intensify; therefore in this chapter, we will also discuss several alternative 
strategies available to this end, pointing out their possible different effectiveness and 
computational burden. 
The rest of this chapter is organized as follows. First in the Section 2 we briefly present the 
two scheduling problems used as reference to analyse the behaviour of the hybrid 
metaheuristics. Note that, even if different, the solutions of these two problems share the 
common property of being represented by sequences of jobs, i.e., by permutations of a given 
number of integers. Then in the Section 3 we illustrate the two hybrid metaheuristics 
considered, first introducing the main features of the pure population-based metaheuristics, 
respectively ACO and PSO, then showing how these are combined with SA, as well as 
discussing alternative triggering rules that can be used to determine the SA starting 
solutions. In the Section 4 we report the experimental test performed, comparing the 
obtained results with the ones of other algorithms from the literature. Finally, in the Section 
5 we draw the chapter conclusions. 
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2. The referenced scheduling problems 
In this section we briefly introduce the characteristics of the two scheduling problems faced 
by the two hybrid metaheuristics presented in the following, reporting also some literature 
review for them. These problems are the Single Machine Total Weighted Tardiness with 
Sequence-Dependent Setups (STWTSDS) problem and the Permutation Flowshop 
Scheduling (PFS) problem. Even if apparently different, the solutions to such problems have 
a common structure since they can both represented by permutation. For this reason, we 
introduced here some common notation. In general a solution x to one of the two scheduling 
problems involving a set of n jobs can be represented by a permutation or sequence 
σ(x)=([1],..., [n]), where [j] indicates the index of the job sequenced in the j-th place. In 
addition we denote with ϕσ:{1,..., n}→{1,..., n}, the mapping between the places in a sequence 
σ and the indexes of the sequenced jobs; for example, if job j is sequenced in the h-th place of 
σ  we have j=ϕσ (h). 

2.1 The single machine total weighted tardiness problem with sequence-dependent 
setups 
The STWTSDS problem consists in scheduling n independent jobs on a single machine. All 
the jobs are released simultaneously, i.e., they are ready at time zero, the machine is 
continuously available and it can process only one job at a time. For each job j=1,..., n, the 
following quantities are given: a processing time pj, a due date dj and a weight wj. A 
sequence-dependent setup time sij must be waited before starting the processing of job j if it 
is immediately sequenced after job i. Setup operations are necessary to prepare production 
resources (e.g., machines) for the job to be executed next, and whenever they depend, as in 
this case, on the (type of) preceding job just completed they are called sequence-dependent 
setups. The tardiness of a job j is defined as Tj=max(0, Cj-dj), being Cj the job j completion 
time. The scheduling objective is the minimization of the total weighted tardiness expressed 
as 1

n

j jj w T
=∑ . This problem, denoted as 1/sij/ΣwjTj, is strongly NP-hard since it is a special 

case of the 1//ΣwjTj that has been proven to be strongly NP-hard in (Lawler, 1997) (note 
that also the 1//ΣTj special case is still NP-hard (Du & Leung, 1990)). Apart from its 
complexity, the choice of the STWTSDS as reference problem is also motivated by its 
relevance for manufacturing industries; in particular, the importance of performance criteria 
involving due dates, such as (weighted) total tardiness or total earliness and tardiness (E-T), 
as well as the explicit consideration of sequence-dependent setups, has been widely 
recognized in many real industrial contexts. In the literature both exact algorithms and 
heuristic algorithms have been proposed for the STWTSDS problem or for a slightly 
different version disregarding the job weights. However, since only instances of small 
dimensions can be solved by exact approaches, recent research efforts have been focused on 
the design of heuristics. The apparent tardiness cost with setups (ATCS) heuristic (Lee et al., 
1997) is currently the best constructive approach for the STWTSDS problem. However, 
constructive heuristics, even if requiring smaller computational efforts, are generally 
outperformed by improvement, i.e., local search, and metaheuristics approaches. The 
effectiveness of stochastic search procedures for the STWTSDS is shown in (Cicirello & 
Smith, 2005), where the authors compare a value-biased stochastic sampling (VBSS), a VBSS 
with hill-climbing (VBSS-HC) and a simulated annealing (SA), to limited discrepancy search 
(LDS) and heuristic-biased stochastic sampling (HBSS) on a 120 benchmark problem 
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instances for the STWTSDS problem defined by Cicirello in (Cicirello, 2003). The literature 
about applications of metaheuristics to scheduling is quite extended. In (Liao & Juan, 2007) 
an ACO algorithm for the STWTSDS is proposed, which is able to improve about 86% of the 
best known results for the Cicirello’s benchmark previously found by stochastic search 
procedures in (Cicirello & Smith, 2005) Recently the Cicirello’s best known solutions have 
been further independently improved in (Cicirello, 2006) by means of a GA approach, in 
(Lin & Ying, 2006) with three SA, GA and TS algorithms, in (Anghinolfi & Paolucci, 2008) 
using an ACO approach and in (Anghinolfi & Paolucci, 2007b) with PSO.  

2.2 The permutation flowshop scheduling problem 
The PFS problem requires to schedule a set of n jobs on a set of m machines so that each job 
is processed by each machine and the sequence of jobs is the same for all the machines. 
Then, a permutation of the n jobs identifies a solution to the PFS problem which consists in 
finding an optimal permutation for the jobs. For each job j and machine h the processing 
time pjh is given; then, the completion times of the jobs on the machines can be computed for 
any given permutation σ=([1],..., [n]) of n jobs as follows 

 1
[1] [1],1C p=  (1) 

 1 1
[ ] [ 1] [ ],1 2,...,j j jC C p j n−= + ∀ =  (2) 

 1
[1] [1] [1], 2,...,h h

hC C p h m−= + ∀ =  (3) 

 1
[ ] [ 1] [ ] [ ],max{ , } 2,..., ; 2,...,h h h

j j j j hC C C p h m j n−
−= + ∀ = =  (4) 

where [ ]
h
jC represents the completion time of the j-th job in the permutation on machine h. 

The scheduling problem is to find the job permutation σ* that minimizes the makespan Cmax, 
corresponding to the completion time of the last job on the m-th machine, i.e., max [ ]

m
nC C= . 

The makespan minimization for the PFS problem, denoted as n/m/P/Cmax, was originally 
proposed in (Johnson, 1954) and afterwards it has been widely investigated in the literature. 
This problem is NP-hard in the strong sense (Garey et al., 1976) for m≥3 and only instances 
of limited size can be solved by exact solution methods in an acceptable computation time. 
Therefore numerous heuristics approaches have been proposed in the literature, among 
which constructive heuristics (e.g., (Palmer, 1965), (Campbell et al., 1970), (Taillard, 1990)) 
improvement heuristics (e.g, (Ho & Chang, 1991), (Woo & Yim, 1998), (Suliman, 2000)) and 
metaheuristics as SA ((Osman & Potts, 1989), (Ishibuchi et al., 1995)), TS ((Nowicki & 
Smutnicki, 1996), (Grabowski and Wodecki, 2004)), GA ((Reeves, 1995), (Ruiz et al., 2006)), 
ACO ((Rajendran & Ziegler, 2004)) and PSO algorithms ((Liao et al., 2007), (Lian et al., 
2006a), (Tasgetiren et al., 2007), (Jarboui et al., 2007)), some of which are taken as reference 
for the performance evaluation of the PSO-SA proposed in the following. 

3. Two hybrid population-based metaheuristics 
In this section we introduce the main concepts of ACO and PSO and we show how two 
hybrid algorithms, respectively ACO-SA and PSO-SA, can be derived through the 
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interaction with SA. Note that in order to illustrate the specific characteristics of the 
algorithms we refer to the STWTSDS problem for ACO-SA and to the PFS one for PSO-SA. 

3.1 The hybrid ant colony optimization algorithm 
The ACO metaheuristic aims at exploiting the successful behaviour of real ants in 
cooperating to find shortest paths to food for solving combinatorial problems (Dorigo & 
Stützle, 2002), (Dorigo & Blum, 2005). Most of the real ants use stigmergy during food search, 
i.e., they have an effective indirect way to communicate each other which is the most 
promising trail, and finally the optimal one, towards food. Ants produce a natural essence, 
called pheromone, which is left on the followed path to food in order to mark it. The 
pheromone trail evaporates over time, finally disappearing on the abandoned paths. On the 
other hand, the pheromone trail can be reinforced by the passage of further ants; due to this 
fact effective (i.e., shortest) paths leading to food are finally characterized by a strong 
pheromone trail, and they are followed by most of ants. The ACO metaheuristic was first 
introduced in (Dorigo et al., 1991), (Dorigo et al., 1996) and (Dorigo, 1992), and since then it 
has been the subject of both theoretical studies and applications. ACO combines both 
Reinforcement Learning (RL) (Sutton & Barto, 1998) and Swarm Intelligence (SI) (Kennedy & 
Eberhart, 2001) concepts: 
• each single agent (an ant) takes decisions and receives a reward from the environment, 

so that the agent’s policy aims at maximizing the cumulative reward received (RL); 
• the agents exchange information to share experiences and the performance of the 

overall system (the ant colony) emerges from the collection of the simple agents’ 
interactions and actions (SI). 

ACO has been successfully applied to several combinatorial optimization problems, from 
the first travelling salesman problem applications (Dorigo et al., 1991), (Dorigo et al., 1996), 
to vehicle routing problems (Bullnheimer et al., 1999), (Reinmann et al., 2004), and to single 
machine and flow shop scheduling problems (den Besten et al., 2000), (Gagné et al., 2002) 
and (Ying & Liao, 2004). 
In this section we present a new hybrid ACO-SA approach to face the STWTSDS problem. 
In (Anghinolfi & Paolucci, 2008) we recently introduced the main characteristics of the pure 
ACO component of ACO-SA, which mainly differ from previous approaches in the 
literature for the following aspects: (a) we use a new pheromone trail model whose 
pheromone values are independent of the problem cost (or quality) function and they are 
bounded within an arbitrarily chosen and fixed interval; (b) we adopt a new global 
pheromone update (GPU) rule which makes the pheromone values asymptotically increase 
(decrease) towards the upper (lower) bound, without requiring any explicit cut-off as in the 
Max-Min Ant System (MMAS) (Stützle & Hoos, 2000); (c) we use a diversification strategy 
based on a temporary perturbation of the pheromone values performed by a local 
pheromone update (LPU) rule within any single iteration. The ACO that we proposed in 
(Anghinolfi & Paolucci, 2008) is mainly based on the Ant Colony System (ACS) (Dorigo & 
Gambardella, 1997), and it includes concepts inspired to the MMAS (Stützle & Hoos, 2000) 
and to the approaches in (Merkle & Middendorf, 2000), (Merkle & Middendorf, 2003), even 
if such concepts are encapsulated in a new pheromone model and exploited in a real 
different manner. We report in Figure 1 the very high level structure of the ACO-SA 

algorithm. In the following we will detail all the involved steps apart from SA intensification 
that we will describe in a separate subsection as this step is in common with the PSO-SA 
algorithm. 
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                      Initialization; 
k=1; 
While <termination condition not met> 
{ 
  For each ant a∈A 
  { 
    Construction of solution xak; 
    Local pheromone update; 
  } 
  SA intensification; 
  Global pheromone update; 
  k=k+1; 
} 

Figure 1. The overall ACO-SA algorithm 

We consider a set A of na artificial ants. At each iteration k, every ant a identifies a solution 
k
ax  building a sequence ( )k

axσ  of the n jobs, whose objective value ( )k
aZ x  is then simply 

computed by executing each job at its feasible earliest start time for that sequence. Every ant 
a builds the sequence ( )k

axσ  by iterating n selection stages: first, the set of not sequenced 

jobs for ant a, 0
aU , is initialized as 0 {1,..., }aU n= ; then, at stage h=1,..., n, the ant a selects one 

job j from the set 1h
aU − to be inserted in the position h of the partial sequence, and updates 

1 \{ }h h
a aU U j−= ; at stage h=n all the jobs are sequenced and n

aU = ∅ . The job selection at 
each stage h of the construction procedure at iteration k is based on a rule that is influenced 
by the pheromone trail ( , )k h jτ associated with the possible solution components, i.e., 

position-job pairs, (h, j), where j∈ 1h
aU − . Differently from other approaches in the literature, 

the pheromone values assigned to ( , )k h jτ  are independent of the objective or quality 
function values associated with previously explored solutions including the component 
(h, j). In particular, we adopt an arbitrary range [ , ]Min Maxτ τ  for the pheromone values, which 
is independent of the specific problem or instance considered; therefore any pair of values, 
such that Min Maxτ τ< , can be chosen so that Maxτ  and Minτ  are not included in the set of 
parameters that must be specified for the algorithm. In addition, the GPU rule controlling 
the ant colony learning mechanism imposes a smooth variation of ( , ) [ , ]k Min Maxh jτ τ τ∈  such 
that both the bounds are only asymptotically reached. Note that also in MMAS lower and 
upper bounds are imposed for ( , )k h jτ , but they must be appropriately selected, 
dynamically updated each time a new best solution is found, taking into account the 
objective function values, and they are used as cut-off thresholds. In the following we 
consider relative pheromone values ' ( , ) ( , )k k Minh j h jτ τ τ= −  such that ' ( , ) [0, ' ]k Maxh jτ τ∈ , 
where 'Max Max Minτ τ τ= − , whenever this makes simpler and more readable the expressions 
introduced. 
Initialization. For each solution component (h, j), h, j=1,..., n, we assign an initial value of the 
pheromone trail by fixing 0 ( , ) ( ) / 2Max Minh jτ τ τ= + ; in addition, we initialize the best 
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current solution x* as an empty solution, fixing the associated objective value Z(x*) to 
infinity. 
Job selection rule. At a selection stage h of iteration k, an ant a determines which job j∈ 1h

aU − is 
inserted in the h-th position of the sequence as follows. First, similarly to the ACS, the ant 
chooses which job selection rule to use between exploitation and exploration: a random 
number q is extracted from the uniform distribution U[0, 1] and if q≤q0 the ant uses the 
exploitation rule, otherwise the exploration one. The parameter q0 (fixed such that 0≤q0≤1) 
directs the ants’ behaviour towards either the exploration of new paths or the exploitation of 
the best paths previously emerged. The exploitation rule selects the job j in a deterministic 
way as  

 [ ]
1

arg max{ ' ( , ) ( , ) }
h
a

k
u U

j h j h j βτ η
−∈

= ⋅  (5) 

whereas the exploration rule according to a selection probability ),( jhp  computed as 

 
[ ]
[ ]

1

' ( , ) ( , )
( , )

' ( , ) ( , )
h
a

k

k
u U

h j h j
p h j

h j h j

β

β

τ η

τ η
−∈

⋅
=

⋅∑
 (6) 

The quantity ),( jhη , associated with the solution component (h, j), is an heuristic value 

computed equal to the priority ),( jhIt of assigning job j in position h at time t according to 
the ATCS rule (Lee et al., 1997) 

 ( 1)

1 2

max( ,0)
( , ) ( , ) exp exp h jj j j

t
j

sw d p t
h j I h j

p k p k s
σϕη −− − ⎡ ⎤⎡ ⎤

= = −⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (7) 

where   

 jh
h

i
iii spst )1(

1

1
)()()1( )( −

−

=
− +∑ += σϕσϕσϕσϕ  (8) 

p  and s  are respectively the average processing time and the average setup time, and k1 
and k2 are the lookahead parameters fixed as originally suggested in (Lee et al., 1997). 
Therefore, in the ACO-SA algorithm the influence of the sequence-dependent setups is 
encapsulated in the heuristic values used in the job selection rule. The parameter β in (5) and 
(6) is the relative importance of the heuristic value with respect to the pheromone trail one. 
Local pheromone update (intra-iteration diversification). As often done in ACO approaches to 
avoid premature convergence of the algorithm, a LPU is performed after any single ant a 
completed the construction of a solution xa in order to make more unlike the selection of the 
same sequence by the following ants. In the ACO-SA we adopt the following the local 
pheromone update rule  

 ' ( , ) (1 ) ' ( , ) 1,..., ; ( )k kh j h j h n j hστ ρ τ φ= − ⋅ ∀ = =  (9) 
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where ρ is a parameter fixed in [0, 1]. We must remark that such kind of update strictly local, 
i.e., we use it to favour the diversification of the sequences produced by the ants within the 
same iteration and (9) temporarily modifies the pheromone values only in the single 
iteration scope, since such changes are deleted before executing the global pheromone update 
phase and starting the next iteration. We denoted in (Anghinolfi & Paolucci, 2008) this 
feature is as reset of the local pheromone update (RLPU).  
Global pheromone update. The (relative) pheromone values ),(' jhkτ  are varied within the 

range ]',0[ Maxτ  during the GPU phase with a rule, called Unbiased Pheromone Update 
(UPU), that we introduced in (Anghinolfi & Paolucci, 2008). The UPU rule does not uses cost 
or quality function values, but smoothly updates of pheromone trails associated with a set 

of quality solution components. We denote with *
kΩ  the best component set determined after 

the completion of iteration k; then, the UPU rule consists of the three following steps: 

1. pheromone evaporation for the solution components not included in *
kΩ  

 *
1' ( , ) (1 ) ' ( , ) ( , )k k kh j h j h jτ α τ+ = − ⋅ ∀ ∉Ω  (10) 

 where 0 ≤α ≤1 is a parameter establishing the evaporation rate; 
2. computation of the maximum pheromone reinforcement ' ( , )k h jτΔ  for the solution 

components in *
kΩ  

 *' ( , ) ' ' ( , ) ( , )k Max k kh j h j h jτ τ τΔ = − ∀ ∈Ω  (11) 

3. update of the pheromone trails to be used in the next iteration for the solution 
components in *

kΩ  

 *
1' ( , ) ' ( , ) ' ( , ) ( , )k k k kh j h j h j h jτ τ α τ+ = + ⋅Δ ∀ ∈Ω  (12) 

The UPU rule guarantees that ' ( , ) [0, ' ]k Maxh jτ τ∈  and that ' ( , )k h jτ converges towards the 
bounds asymptotically ( ' ( , )k h jτΔ  is progressively reduced as much as ' ( , )k h jτ  
approaches to 'Maxτ , as well as the decrease of ' ( , )k h jτ  towards 0 in (10)) with a law similar 

to the most frequently used cooling schedule for SA. The set *
kΩ  adopted in the ACO-SA is 

the one defined in (Anghinolfi & Paolucci, 2008) as the Best-so-far (BS) solution component 
set, that is, it includes only the solution components associated with the best sequence σ * 
find so far 

 { }*
*( , ) : 1,..., ; ( )k h j h n j hσφΩ = = =  (13) 

Termination conditions. The algorithm is stopped when a maximum number of iterations, or a 
maximum number of iterations without improvements, is reached.  

3.2 The hybrid particle swarm optimization algorithm 
PSO is a recent metaheuristic approach motivated by the observation of the social behaviour 
of composed organisms, such as bird flocking and fish schooling, and it tries to exploit the 
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concept that the knowledge to drive the search for optimum is amplified by social 
interaction. PSO executes a population-based search in which the exploring agents, the 
particles, modify their positions during time according not only to their own experience, but 
also to the experience of other particles. In particular, a particle p may change its position 
with a velocity that in general includes a component moving p towards the best position so 
far achieved by p to take into account the particle experience, and a component moving p 
towards the best solution so far achieved by any among a set of neighbouring particles (local 
neighbourhood) or by any of the exploring particles (global neighbourhood). Note that, 
differently from GA, the PSO population is maintained and not filtered. PSO is based on the 
Swarm Intelligence (SI) concept (Kennedy & Eberhart, 2001): the agents are able to exchange 
information in order to share experiences, and the performance of the overall multi-agent 
system (the swarm) emerges from the collection of the simple agents’ interactions and 
actions. PSO has been originally developed for continuous nonlinear optimization (Kennedy 
& Eberhart, 1995), (Abraham et al., 2006). The basic algorithm for a global optimization 
problem, corresponding to the minimization of a real objective function f(x) of a variable 
vector x defined on a n-dimensional space, uses a population (swarm) of np particles; each 
particle i of the swarm is associated with a position in the continuous n-dimensional search 
space, xi=(xi1,…, xin) and with the correspondent objective value f(xi) (fitness). For each 
particle i, the best previous position, i.e. the one where the particle found the lowest 
objective value (personal best), and the last particle position change (velocity) are recorded 
and represented respectively as pi=(pi1,…, pin) and vi=(vi1,…, vin). The position associated 
with the current smallest function value is denoted as g=(g1,…, gn) (global best). Denoting 
with k

ix and k
iv respectively the position and velocity of particle i at iteration k of the PSO 

algorithm, the following equations are usually used to iteratively modify the particles’ 
velocities and positions: 

 1
1 1 2 2( ) ( )k k k k

i i i i iv w v c r p x c r g x+ = ⋅ + ⋅ − + ⋅ −  (14) 

 1 1k k k
i i ix x v+ += +  (15) 

where w is the inertia parameter that weights the previous particle’s velocity; c1 and c2, 
respectively called cognitive and social parameter, multiplied by two random numbers r1 and 
r2 uniformly distributed in [0, 1], weight the velocity towards the particle’s personal best, 
( )k

i ip x− , and the velocity towards the global best solution, ( )k
ig x− , found so far by the 

whole swarm. The new particle position is determined in (15) by adding to the particle’s 
current position the new velocity computed in (14). The PSO velocity model given by (14) 
and (15) is called gbest, but also a lbest model is introduced in (Kennedy & Eberhart, 2001): in 
this latter model the information about the global best position found so far by the whole 
group of particles is replaced by the local best position for each particle i, li=(li1,…,lin), i.e., 
the position of the best particle found so far among a subset of particles nearest to i. The PSO 
parameters that we need to fix are the inertia w, the cognitive and social parameters c1 and 
c2, and finally the dimension of the swarm np; taking into account that in the standard PSO 
for continuous optimization c1+c2=4.1 (Clerc & Kennedy, 2002), the number of parameters 
needed by this metaheuristic is quite reduced.   
In recent years many there is an increasing attention in the literature for application of the 
PSO approach to discrete combinatorial optimization problems. For example, PSO has been 
applied to the traveling salesman problem (TSP) (Pang et al., 2004), the vehicle routing 
problem (Chen et al., 2006), and scheduling problems (Tasgetiren et al., 2004), (Liao et al., 
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2007), (Lian et al., 2006a), (Lian et al., 2006b), (Allahverdi & Al-Anzi, 2006) and (Parsopoulos 
& Vrahatis, 2006). Discrete PSO (DPSO) approaches differ both for the way they associate a 
particle position with a discrete solution and for the velocity model used; in particular, since 
here we consider a combinatorial problem whose solutions are represented by 
permutations, we could classify the DPSO approaches in the literature according to three 
kinds of solution-particle mapping, i.e., binary, real-valued and permutation-based, and 
three kinds of  velocity model used, i.e., real-valued, stochastic or based on a list of moves. 
The first DPSO algorithm proposed in (Kennedy & Eberhart, 1997) used a binary solution 
representation and a stochastic velocity model since it associates the particles with n-
dimensional binary variables and the velocity with the probability for each binary 
dimension to take value one. In (Tasgetiren et al., 2007), (Tasgetiren et al., 2004), 
(Parsopoulos & Vrahatis, 2006) real values are associated with the particle dimensions to 
represent the job place in the scheduling sequence according to a random key representation 
(Bean, 1994), and a smallest position value (SPV) rule is exploited to transform the particle 
positions into job permutations. Permutation-based solution-particle mappings are used in 
(Hu et al., 2003) for the n-queens problem together with a stochastic velocity model, 
representing the probability of swapping items between two permutation places, and a 
mutation operator, consisting of a random swap executed whenever a particle coincides 
with the local (global) best one. In (Lian et al., 2006a) particles are associated with job 
sequences and velocities are implemented as crossover and mutation operators borrowed 
from the genetic algorithm approach. Generally the velocity models adopted in DPSO 
approaches are either stochastic or real-valued. To our best knowledge the unique examples 
of velocity models based on a list of moves can be found in the DPSO approach for the TSP 
in (Clerc, 2004), together with the new DPSO approach that we very recently presented in 
(Anghinolfi & Paolucci, 2007b) to face the STWTSDS problem. This velocity model is quite 
difficult to be used as it needs the definition of an appropriate set of operators to extend the 
PSO computations in a discrete solution space. 
In the following we illustrate the main features of the hybrid PSO-SA which extends the 
DPSO approach introduced in (Anghinolfi & Paolucci, 2007b) to face the PFS problem. As 
for the algorithm in (Anghinolfi & Paolucci, 2007b), PSO-SA is based on both a permutation 
solution-particle representation and on a list-of-moves velocity model, but differently we 
here introduce a new restart mechanism to avoid the stagnation of particles. In Figure 2 we 
report the overall structure of the PSO-SA algorithm. Then, similarly to what done for ACO-
SA, we will detail the main PSO steps, finally dealing with the SA intensification in the last 
subsection. 
 

Initialization; 
While <termination condition not met> 
{ 
  For each particle 
  { 
    Velocity update; 
    Position update; 
    Fitness computation; 
  }  
  SA intensification; 
  Group restart; 
  Best references update; 
} 

Figure 2. The PSO-SA algorithm. 



 Simulated Annealing 

 

12 

We use a set of np particles, each one associated with a permutation σ, that is, with a 
schedule x whose fitness is given by the cost value Z(x). To define the particle behaviour 
we need to introduce a metric for the permutation space and a set of operators to compute 
velocities and to update particles’ positions consistently. As illustrated in (Anghinolfi & 
Paolucci, 2007b) we define a velocity as a set of moves, called pseudo-insertion (PI) moves, 
that, if applied to a given particle or permutation, change the position of the particle, 
generating a different permutation. Velocities are produced as difference between particle 
positions. For example, given a pair of particles p and q, the velocity v moving particle p 
from its current position to the one of particle q is a list of PI moves computed as the 
difference v=σq-σp. A PI move is a pair (j, d), where d is an integer displacement that is 
applied to job j within the permutation. Assuming for example that j=ϕ(h), a PI move (j, 
d), which delays a job j in the permutation σ, extracts j from its current place h in σ and 
reinserts it generating a new permutation such that j=ϕ(min(h+d, n)); analogously, a PI 
move (j, -d), which instead anticipates a job j, produces a new sequence such that 
j=ϕ(max(h-d, 0)). If for example we consider two particles associated with two 
permutations of n=4 jobs, σp=(1,2,3,4) and σq=(2,3,1,4), then, we compute the velocity 
v=σq-σp={(1,2),(2, 1),(3,-1)}. The list of PI moves representing a velocity can include at most 
a single PI move for a given job.  
We define a position-velocity sum operator to change the particle positions in the 
permutation space, which applies the PI moves included in a velocity list one at a time by 
extracting the involved job from the permutation and reinserting it in the new place. We 
call these moves as pseudo-insertion since in general they do not produce feasible 
permutations but what we called pseudo-permutations. We illustrate this point with an 
example: if we apply to the permutation σp=(1,2,3,4) the first move in the velocity 
v={(1,2),(2, -1),(3,-1)}, then we extract job 1 from the first place and reinsert it in the third 
place obtaining the pseudo-permutation (-,2,[3,1],4), where symbol “-“ denotes that no job 
is now assigned to the first place, whereas [3,1] represents the ordered list of the two jobs 
3 and 1 both assigned to the third place. Hence, PI moves produce in general not feasible 
permutations but pseudo-permutations characterized by one or more empty places and 
by others places containing a list of jobs. Then, we introduce the permutation completion 
procedure reported in Figure 3 to transform a pseudo-permutation into a feasible 
permutation. In Figure 3 π(h) denotes the ordered set of items in the h-th place of the 
pseudo-permutation π, pull(s) the function that extracts the first element from an ordered 
set s, and push(i, s) the function that inserts the element i at the bottom of the set s. Hence, 
the permutation completion procedure manages π(h) as a first-in-first-out (FIFO) list. As 
an example, starting from the pseudo-permutation π=([1,3],-,-,[4,2]) the permutation 
completion procedure produces the feasible permutation (3,1,4,2).  
We define a velocity sum operator ⊕ which generates the list of PI moves for a velocity 
w=v⊕v’ from the union of the PI moves in v and v’; in addition, since any job can appear 
only once in the PI list associated with a velocity, if v and v’ include respectively the PI 
moves (j, d) and (j, d’), then w must include (j, d+d’) only if d+d’≠0. Finally, we define the 
constant-velocity multiplication so that the velocity computed as w=c⋅v, where c is a real 
positive constant, includes the same PI moves of v whose displacement values have been 
multiplied by c. 
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Input: π a pseudo-sequence 
Output: σ a feasible sequence 
for each h=1,...,n  
  { 
    if |π(h)|=1 skip; 
    else if |π(h)|=0  
     { 
       repeat 
      k=h+1; 
      while k<n and |π(k)|=0 
      π(h)=pull(π(k)); 
     } 
    else if |π(h)|>1  
     { 
      while |π(h)|>1             
         push(pull(π(h), π(h+1)); 
     } 
   } 
σ=π; 

Figure 3. The sequence completion procedure. 

We can now consider the main steps of PSO-SA. 
Initialization. A set of initial solutions, i=1,..., np, is assigned to the np particles by randomly 
generating a set of np permutations. This initialization procedure is similar to the one 
adopted for the discrete PSO approach in (Tasgetiren et al., 2007). Analogously, a set of np 
initial velocities is randomly produced and associated with the particles. In particular these 
velocities are generated first randomly extracting the number of PI moves composing a 
velocity from the discrete uniform distribution U[[⎣n/4⎦, ⎣n/2⎦], then, for each move, 
randomly generating the involved job and the integer displacement are respectively from 
U[1, n] and from U[⎣−n/3⎦, ⎣n/3⎦]. The set of particles is partitioned into nc clusters Gcl, 
cl=1,..., nc, randomly associating each particle to one of them, and the local best position li 
(i.e., the related solution xli), computed as 0arg min ( )

cl
i jj G

l Z x
∈

= , is associated with each particle 

i∈Gcl. The quantity nc is an input parameter of the algorithm. Finally, the global best 
position, that is the position associated with the best permutation found by any of the 
particles, is denoted with g (whose related solution is xg). 
Velocity and position update. At iteration k, we define for each particle i three velocity 
components, inertial (iv), directed to local best velocity (lv), and directed to global best 
velocity (gv), as follows: 

 1k k
i iiv w v −= ⋅  (16) 

 1
1 1 ( )k k

i i ilv c r l σ −= ⋅ −  (17) 

 1
2 2 ( )k k

i igv c r g σ −= ⋅ −  (18) 

Parameters w, c1 and c2 respectively represent the inertia parameter that weights the 
previous particle’s velocity, and two kinds of social parameters, multiplied by two random 
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numbers r1 and r2 extracted from U[0,1], weighting the velocities towards the best position 
in the clusters (local best) and the global best position of the whole set of particles. Then, we 
update the particles’ velocities by summing the three components (16), (17) and (18). The 
velocity model adopted for the PFS problem is the one called glbest in (Anghinolfi & 
Paolucci, 2007b) that does not include any velocity component directed towards the 
particle’s personal best solution. In addition, differently from the standard PSO procedure, 
we compute the new position separately summing to the current particle position the three 
velocity components (16), (17) and (18) one at a time, so moving the particle through a set of 
intermediate feasible permutations obtained by the permutation completion procedure.  
Restart of a group of particles. Differently from the DPSO in (Anghinolfi & Paolucci, 2007b), we 
restart all the particles in a group to avoid a premature convergence of the algorithm due to 
the stagnation of all the particles in one single position of the permutation space and to 
differentiate exploration. In particular, the positions of the particles belonging to the group 
whose local best solution is coincident with the global best solution of the swarm are 
reinitialized with a random solution and the local best is reset. Moreover, after such a reset, 
for the same group of particles we substitute for r iterations the weight of the global best 
velocity component c2 with the value 2

kc computed according to the following rule 

 2 2

'( ) ',... 'k k kc c k k k r
r
−

= = +  (19) 

Since k’ is the iteration at which the reset of the positions takes place and r is a parameter to 
be fixed, (19) corresponds to set for all the involved particles the value of the weight c2 to 0 
and then to make it linearly increase to its original value in r iterations. In this way the 
diversification effect of this group restart is reinforced since the particles in this group are 
not driven to immediately follow the direction towards the global best position but they can 
search for other good solutions independently.  

3.3 The SA intensification 
The SA intensification step included in the overall structures of both the ACO-SA and PSO-
SA algorithms respectively in Figure 1 and 2 is performed using a SA procedure similar to 
the one adopted for the H-CPSO algorithm presented in (Jarboui et al., 2007). The SA 
algorithm, which originally took its inspiration from the simulation of the physical 
annealing of melted metals (Kirkpatric et al., 1983), iterates exploring the neighbourhood 
N(x) of the current solution x accepting a stochastically generated candidate x’∈N(x) with 
the following probabilistic rule: if ΔZ=Z(x)-Z(x’)≤0 then x’ becomes the new current solution, 

otherwise x’ is randomly accepted according to the probability distribution P(ΔZ, T)=
( )Z

Te
−Δ

, 
where T is a control parameter playing the role of the temperature in the physical annealing 
process. This algorithm is usually initialized with a high value T0 of the control parameter 
and it iterates progressively decreasing it until a termination condition is met according to a 
rule, called cooling schedule, which is critical for the algorithm convergence (Kirkpatric et al., 
1983). In both the proposed hybrid algorithms to update T we adopt the exponential rule 
Tk=T0⋅θ k, where θ is a constant positive parameter. Similarly to (Jarboui et al., 2007) we use a 
stochastic definition of the neighbourhood N(x) of the current solution x based on the 
random selection of insert and swap moves. In particular, we apply either an insert or a 
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swap move on the permutation associated with x to generate the solution candidates at each 
SA iteration: first the algorithm randomly chooses with probability 0.5 between the two 
kinds of move, then it randomly selects the job to be moved and its insertion point or the 
pair of jobs to be swapped. The SA terminates when it reaches a maximum number of non 
improving iterations.  
An important aspect to be considered whenever we embed an intensification procedure into 
a main metaheuristic is when such procedure is fired and which triggering rule is used. 
Designing a (hybrid) metaheuristic we should find an acceptable balance between 
exploration thoroughness and computational burden. Apparently, intensification steps 
greatly improve the accuracy of the search but also increase the time of computation. A 
quite straightforward choice for the two algorithms considered in this chapter is to perform 
intensification after all the exploring agents complete an iteration. Then, in ACO-SA the SA 
intensification takes place after all the ants generate a solution and in PSO-SA after all the 
particles have updated their position. Triggering rules specify which set SAX  of solutions in 
the current population have to be intensified, i.e., which solutions are chosen as starting 
point of SA. Even in this case a balance between accuracy and computation workload must 
be usually found. We can adopt rules selecting one or more starting points for 
intensification as detailed in the following. 
a) The best in iteration (BI) rule: the SA is started from the (single) best solution found by 

the ants (particles) in the current iteration, i.e., *
* 1,...,

{ : arg min ( )}k k
SA i ii na

X x i Z x
=

= = .  

b) The random (RND) rule: the SA is started from a single solution that is randomly 
extracted from the solutions determined by the ants or particles in the current iteration 
k. 

c) The improved solution without intensification (ISWI) rule: to implement this rule we need 
to define *

WIx  as the best solution found by any ant (particle) in the previous iterations 
without using the SA intensification. Then, the set SAX  may include one or more 

solutions found in the current iteration k improving *
WIx , i.e. 

*{ : ( ) ( ), 1,..., }k k
SA i i WLSX x Z x Z x i na= < = . Apparently, the number of solutions that can be 

subject to intensification at the end of an iteration with this rule can vary from zero to 
the number of ants na (or to the number of particles, np), even if the upper bound 
appear very unlikely. 

d) The all (ALL) rule: the intensification is started from all the solutions found by the ants 
or particles in the current iteration k. 

Independently of the used rule, if the solution produced by SA improves the starting *
k
ix , 

then in ACO-SA the new solution may become the new current best and their relevant 
pheromone trails are updated accordingly, whereas in PSO-SA the new solution is 
associated with the particle i*, so updating its relevant position, and the lbest solution for the 
cluster including particle i* , as well as the gbest solution are possibly updated.  
The BI and RND rules clearly outperform the ALL rule, and they are very likely to 
outperform also the ISWI one, under the computational time aspect as they both intensify a 
single solution. The ALL rule apparently should allow to produce solutions with the same 
quality of the other rules (we must keep in mind that intensification is executed with a 
stochastic algorithm) if we grant it a sufficiently long computation time, since it is a superset 
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of them; on the other hand the ALL computational requirement is so high to make such rule 
hard to be accepted. Our experience also pointed out that the quality of the solutions yielded 
using RND are on the average dominated by the ones form the BI one. Therefore, we believe 
that in general the BI and ISWI may represent good compromise choices for triggering rules: 
the decision between these two rules can finally depend on the different time and quality 
requirements of the case under concern.  

4. Experimental results 
In this section we present some experimental results with the purpose of providing evidence 
on the possible benefit of combining SA with the two population-based metaheuristics 
considered. To this end we compared the behaviour of ACO-SA and PSO-SA with the one of 
the two same algorithms when LS is used instead of SA as intensification component. In 
particular, we adopted the deterministic LS procedure, reported in Figure 4, that, similarly 
to the SA algorithm described in the previous section, explores a mixed type of solution 
neighbourhood obtained by insert and swap moves. 
 

xb=xc=x0; 
non_impr=0; 
neigh_type=1; 
 
repeat 
  { 
   xc=xb; 
    
   xc=best_in_neigh(xb,neigh_type); 
    
   if Z(xc)<Z(xb)  
     { 
      xb=xc; 
      neigh_type=1; 
     } 
   else  
     { 
      non_impr++; 
      neigh_type++; 
     } 
  } until (non_impr > max_non_impr) and 
neigh_type<=2; 

Figure 4. The LS algorithm 

We must observe that the LS in Figure 4 implements a kind of variable neighbourhood 
descent procedure (VND) (Hansen & Mladenovic, 1999), which for each current solution 
completely explores the neighbourhood generated by insert moves and, if no improvement 
is found, the one produced the swap moves. Then, in the following we report first the 
experimental tests performed for ACO-SA, giving greater emphasis to the analysis of the 
behaviour and relative effectiveness of the alternative triggering rules introduced in Section 
3.3, whereas we limit the successive discussion on PSO-SA only on the comparison with the 
LS intensified version of algorithm. All the versions of the two algorithms analysed were 
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coded in C++ and the experimental tests were executed on an Intel Core 2 6600, 2.4 GHz, 2 
Gb PC (note however that our implementations do not exploit the dual processor 
architecture). During all the experimental campaign we adopted as termination criterion the 
maximum number of fitness (objective) function evaluations, that we fixed = 20,000,000. 
This choice follows the recommendation in (Taillard, 2005) suggesting the use of absolute 
computational burden measures (i.e., independent of the kind of computer) in order to 
obtain results easier to be compared in the scientific community. As regards the values of 
the parameters characterizing the SA procedure included in both the hybrid algorithms here 
considered, we fixed θ=0.95, the initial temperature T0 = -(0.2⋅Z0)/log(0.5) (such value is 
chosen to impose that at the initial iteration the probability of accepting a solution with a 
20% deviation from objective value of the starting solution is 0.5), and imposing 10⋅n2 non 
improving iterations, where n is the number of jobs of the considered scheduling problem, 
as SA stopping criterion (note that similar settings are used in (Jarboui et al., 2007)). 

4.1 The tests on ACO-SA 
The benchmark that we adopted to analyse ACO-SA is the set of 120 problem instances for 
the STWTSDS with 60 jobs provided in (Cicirello, 2003) and available online at 
http://www.cs.drexel.edu/~cicirello/benchmarks.html. Note that this benchmark was 
used for testing various metaheuristic approaches recently appeared in the literature as 
(Cicirello & Smith, 2005), (Liao & Juan, 2007), (Cicirello, 2006), (Lin & Ying, 2006), 
(Anghinolfi & Paolucci, 2008) and (Anghinolfi & Paolucci, 2007b). The benchmark was 
produced by generating 10 instances for each combination of three different factors usually 
referenced in the literature (for a definition and discussion see, e.g., (Pinedo, 1995)): the due 
date tightness δ, the due date range R, and the setup time severity ξ, selected as follows: 
δ∈{0.3, 0.6, 0.9}, R∈{0.25, 0.75}, ξ∈{0.25, 0.75}. For this set of tests we fixed the parameters 
characterizing the ACO as follows: na=30, α=0.09, β=0.5, ρ=0.05, q0=0.7.  
We conducted first a test in order to compare the possible triggering rules, i.e., BI, RND, 
ISWI and ALL, for ACO-SA. For each configuration of the algorithm c and for each instance 
i in the benchmark we executed 5 runs then computing the average result ciZ ; after that, we 

obtained the best average result for each instance i as * mini cic
Z Z= , and we computed for 

each configuration c and instance i the average percentage deviation Δci from the best 
average *

iZ as  

 
*

*
ci i

ci
i

Z Z
Z
−

Δ =  (20) 

 

finally obtaining the overall average percentage deviation Δc for each configuration c as 

 ∑Δ=Δ
=

I

i
cic I 1

1
 (21) 

 

where I is the total number of instances considered. In Table 1 we summarise the obtained 
results. The columns of Table 1 report the overall average percentage deviations (Δc) and the 
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relevant standard deviations (Std) for the four tested triggering rules, with and without the 
elimination of possible outliers; in fact, since in the objective values in the benchmark we 
observed differences of several orders of magnitude, the elimination of the outliers would 
reduce the possible influence of very slight absolute differences in the objectives for 
instances with small reference values. In particular, excluding the outliers we eliminated 
from the computation of the averages the instances with a percentage deviation not in the 
interval (-40%, 40%). In the last column of Table 1 we also show the average computational 
time (CPU) in seconds needed to terminate the runs. 
 

   Without outliers (5 over 120)  

 Δc Std Δc Std CPU (sec.) 

BI 0.14% 0.44% 0.10% 0.20% 23.8 

RND 2.18% 6.10% 1.49% 4.89% 22.5 

ISWI 7.51% 20.53% 4.21% 13.22% 20.8 

ALL 7.99% 23.89% 4.41% 15.15% 20.6 
 

Table 1. The comparison of intensification triggering rules for ACO-SA. 

As we can observe, there are relevant differences both in the average percentage deviations 
and in the standard deviations for the tested rules. Then we executed the well-known non-
parametric Friedman’s test with 5% significance level obtaining that the differences between 
two groups of rules, one consisting of BI and RND, and the other ISWI and ALL, are 
significant from a statistical standpoint, both including and excluding the outliers. 
Therefore, at least for the kind of termination condition here considered, the two rules that 
execute a single SA intensification for iteration of the algorithm dominates the others. This 
may be due to the fact that the fixed maximum number of fitness function evaluations is 
better exploited by allowing fewer, here specifically one, SA search for iteration, so letting 
the whole algorithm execute a greater number of iterations. This behaviour is also suggested 
by the slightly larger computation time spent using the BI and RND configurations. Since 
we noted that the overall results for BI and RND in the first two rows of Table 1 were rather 
distant, we repeated the statistical test for a lower significance level, finding that the 
hypothesis that samples are not significantly different can be rejected when fixing a 4% 
level. In the second test performed we compared the ACO-SA results produced with the BI 
rule, with the one generated substituting SA with the LS described in Figure 4. In particular, 
we compared this latter configuration, denoted as ACO-LS, with ACO-SA in Table 2 (whose 
structure is analogous to Table 1). 
 

   Without outliers (5 over 120)  

 Δc Std Δc Std CPU (sec.) 

ACO-SA 0.15% 0.45% 0.11% 0.22% 23.8 

ACO-LS 8.25% 22.33% 4.23% 10.05% 16.6 

Table 2. The comparison of ACO-SA and ACO-LS. 
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The differences between the performance (both with and without outliers) of the two 
algorithms are apparent and also in this case their significance was confirmed by the 
statistical test with 5% significance level. Observing the computational times in the CPU 
column, we again could explain the worst behaviour of ACO-LS with the attitude of LS of 
being trapped in local optima: LS spent more fitness function evaluations than SA at each 
iteration as it deeply explores the basin of attraction of the intensified solution; then, the 
whole algorithm performed a smaller number of iterations. On the other hand, the ability of 
SA of escaping from local optima, i.e., its ability of diversifying the search, clearly turns out 
to be more effective. 
Even if the evaluation of the performance of stochastic algorithms should always be based 
on average results, to complete the tests with the Cicirello’s benchmark for the STWTSDS 
we report also the comparison of the best results over 5 runs obtained with ACO-SA and 
ACO-LS with a set of best known results. In particular, we consider an aggregate set of best 
known solutions combining the best solutions yielded by the following approaches: the 
ACO algorithm in (Liao & Juan, 2007), the GA in (Cicirello, 2006) and the SA, GA and TS 
algorithms in (Lin & Ying, 2006). Table 3 basically reproduces the same picture of Table 2, 
but here the possible presence of good solutions produced by chance for some instances 
should appear from the higher standard deviation values. 
 
 

   Without outliers (8 over 120) 

 Δc Std Δc Std 

ACO-SA 1.18% 11.50% 0.99% 3.43% 

ACO-LS 8.20% 21.74% 3.41% 6.04% 
 

Table 3. The comparison of ACO-SA and ACO-LS with the best known solution. 

4.2 The tests on PSO-SA 
In order to evaluate the performance of PSO-SA compared to the one of the PSO algorithm 
with the LS presented in Figure 4 (denoted in the following as PSO-LS), we considered the 
well-known set of benchmark instances for the PFS problem with makespan criterion 
provided by Taillard (Taillard, 1993). In particular, we considered the benchmark set that 
includes 10 instances for n=20, 50, 100, 200, 500 jobs and m=5, 10, 20 machines (such classes 
of instances are denoted in the following with the n x m notation). For this test we used a set 
of np=2⋅n particles and a number of particle clusters nc=np/10, fixing the values of the 
parameters needed by PSO as w=0.5, c1=1 and c2=2, setting r=40 for the instances with 20 
and 50 jobs and r=20 for the ones with 100, 200 and 500 jobs. Similarly to the campaign for 
ACO-SA, we executed 5 runs for each benchmark instance, computing the average results, 
the best average results as previously described, finally the overall average percentage 
deviations as (21). In this case we directly compared PSO-SA and PSO-LS adopting BI as 
intensification firing rule. Table 4 summarizes the results produced by the two algorithms 
highlighting the outcomes for the different classes of instances as specified in the first 
column (Problem). 
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 Avg vs Avg (Δc) Avg vs BK (ΔBKc) Total CPU CPU for finding best 

Problem PSO-SA PSO-LS PSO-SA PSO-LS PSO-SA PSO-LS PSO-SA PSO-LS 

20x5 0.00% 0.00% 0.04% 0.04% 23.5 26.5 0.1 0.2 

20x10 0.00% 0.03% 0.00% 0.03% 41.2 42.0 3.7 4.4 

20x20 0.01% 0.01% 0.02% 0.02% 76.5 79.0 16.7 18.3 

50x5 0.00% 0.02% 0.00% 0.02% 39.8 39.5 3.2 4.0 

50x10 0.00% 0.37% 0.54% 0.91% 79.3 71.7 29.7 29.8 

50x20 0.00% 0.36% 1.04% 1.41% 149.3 154.9 78.4 77.9 

100x5 0.02% 0.02% 0.11% 0.11% 76.9 65.8 17.2 17.7 

100x10 0.03% 0.11% 0.70% 0.78% 146.7 126.3 55.9 42.9 

100x20 0.03% 0.16% 2.41% 2.54% 242.3 275.0 138.7 185.1 

200x10 0.00% 0.49% 0.16% 0.65% 253.6 212.7 105.8 106.2 

200x20 0.00% 1.42% 1.34% 2.78% 377.2 462.8 270.3 416.8 

500x20 0.00% 4.06% 0.75% 4.85% 900.0 1112.2 737.4 1104.2 
 
Table 4. The comparison of PSO-SA with PSO-L1 for benchmark instance classes.  

The first pair of columns in Table 4 reports the comparison between the overall average 
percentage deviations (Δc) from the best average; as it appears, PSO-SA outcomes are on the 
average never worse than the PSO-LS ones for each class of instances and also the 
Friedman’s test with 5% significance level confirmed the statistical significance of this result. 
We must remark that we report here also the runs for the greatest instances with 500 jobs 
even if for such cases the value of maximum fitness function evaluations adopted as 
termination criterion turned out to be too restrictive: such value in fact allowed a too small 
number of iterations to really appreciate the behaviour of the whole hybrid approach 
(actually, we could consider the test for the 500x20 only a comparison between SA and LS). 
Nevertheless, we verified the statistical significance of the results even excluding the 500x20 
instances. The second pair of columns in Table 4 shows the overall average percentage 
deviations (ΔBKc) of the average PSO-SA and PSO-LS results from the best know solutions 
(BK) for the Taillard’s PSP benchmark (we suggest the readers interested to BK to refer to 
Taillard’s web site where this set is maintained and updated). The third pair of columns 
reports the total average CPU time needed by the compared algorithms to terminate, 
whereas the last pair of columns the average CPU needed to find the best solution produced 
in the runs (both values are in seconds). As we can observe, the differences among 
computational times are not really significant for this benchmark.  
We show in Table 5 the overall comparison between PSO-SA and PSO-LS for the 
benchmark, including also the standard deviations. 
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 Avg vs Avg Avg vs BK CPU 

 Δc Std ΔBKc Std Total For best

PSO-SA 0.01% 0.03% 0.59% 0.73% 200.5 121.4 

PSO-LS 0.59% 1.14% 1.18% 1.47% 222.4 167.3 

Table 5. The overall comparison of PSO-SA and PSO-LS algorithms. 

Finally, we can comment that also in the case of a hybrid PSO based algorithm, the presence 
of the SA search resulted apparently more effective than a LS one (we must recall that the LS 
used here has also a VND flavour), due to its powerful intensification ability but specifically 
to its attitude to smoothly diversify the exploration according to the reduction of the value 
of the parameter T ruled by the cooling schedule. 

5. Conclusions 
In this chapter we illustrated how SA can be exploited to embed in two alternative 
population-based metaheuristics a trajectory search component. Population-based 
metaheuristics need intensification procedures as LS to reach peak performances for discrete 
combinatorial problems. The effectiveness of using SA instead of LS to this end emerged 
from the experimental tests reported in this chapter. We considered ACO and PSO and we 
analysed the performance of the resulting hybrid algorithms on two scheduling problems 
quite extensively faced in the literature, the STWTSDS and the PSP problems. However, 
even different, the combinatorial structure of such problems is the same, as their relevant 
solutions can be represented by permutations. Actually, we compared two “structurally” 
similar trajectory methods, LS and SA: in particular we adopted a deterministic LS which 
explores a combination of two neighbourhoods generated respectively by insert and swap 
moves, with a VND fashion; similarly, the stochastic SA procedure at each iteration derives 
the next candidate solution first randomly selecting between an insert and a swap move. In 
other words we tried to use the same kind of ingredients in the two trajectory methods in 
order to measure their relative strength. Hence the results that we showed allow to conclude 
that the principles in SA can lead to superior solution improvement procedures than LS 
when the same level of sophistication is used in both of them, without implying the 
obviously wrong claim that “any” SA procedure is better than “any” LS. 
Hybridization by combining a population-based algorithm, provided with memory, 
learning and/or swarm intelligence mechanisms, with SA is a viable strategy to produce in 
a simple way high quality metaheuristics. Therefore, we would recommend to consider also 
this possibility when tackling complex combinatorial problems: the intensification (the 
attitude of operating as a LS) and diversification (the attitude of not limit the search to a 
confined region) features that are blended in SA in a dynamic fashion (ruled by the cooling 
schedule) are certainly good ingredients for powerful hybrid methods. 
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1. Introduction     
A multi-objective simulated annealing (MOSA) algorithm is described in this chapter to 
solve a real maintenance workforce scheduling problem (MWSP) aimed at simultaneously 
minimizing the workforce cost and maximizing the equipment availability. Heavy industry 
maintenance facilities at aircraft service centres, railroad yards and steel companies must 
contend with scheduling Preventive Maintenance (PM) tasks to ensure critical equipment 
remains available (Quan et al., 2007). PM tasks are labour intensive and the workforce that 
performs those tasks are often highly-paid and highly skilled with different proficiencies, 
which means the PM tasks scheduling should minimize the workforce costs. Therein lies a 
dilemma: a small labour force would help control costs, but a small labour force cannot 
perform many PM tasks per hour—and equipment that is not available does not generate 
revenue. A long completion time is not cost effective but neither is having too many 
workforce costs. A proper balance would minimize labour costs while simultaneously 
finishing all PM tasks in a timely manner. In other words, a trade-off must be made between 
the workforce costs and a timely completion of all PM tasks. Hence, in most real PM tasks 
scheduling problems, we encounter the multi-objective optimization.  
There are very few previous papers focusing on the maintenance workforce scheduling 
problem. Higgins (1998) formulated the railway track maintenance crew problem as a 
mathematical program, and then used tabu search algorithms to solve the problem. Ahire et 
al., (2000) examined the utility of the evolution strategies to solve a MWSP with the aim of 
minimizing Makespan considering multiple-skills labour and workforce availability 
constraints. Yanga et al., (2003) formulated an airline maintenance manpower planning 
problem under a one week planning cycle considering various flexible strategies such as 
short-term or temporary contracts, trainee, part-time and subcontracted workers. They 
considered workforces with different types of skills that are grouped into a number of so-
called “squads” with different numbers of members (or size). The objective was to minimize 
the total required manpower while satisfying the demand for every time slot. Quan et al., 
(2007) used the evolutionary algorithms to solve a multi-objective PM task scheduling 
problem with the aim of simultaneously minimizing workforce costs and Makespan. 
Workforce costs consist of the hiring cost of workers required to complete all PM tasks on 
time as well as the idle time cost. Makespan refers to the total amount of time it takes to 
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complete all PM tasks. Notice that these two objectives are conflicting because minimizing 
the workforce increases the Makespan. They assumed that workers have two different skills, 
i.e., mechanic and electric and each worker can perform only one skill.  
The rest of the chapter is organized as follows. Section 2 presents the problem description. 
In Section 3, the preliminary definition and concepts of the multi-objective optimization as 
well as MOSA’s literature are presented. The MOSA to solve the considered problem is 
developed in Section 4. Experimental results are presented and discussed in Section 5. 
Finally, Section 6 mentions the conclusion and some future work.    

2. Problem description 
The considered problem is related to a steel company which has recently moved to a plant 
wide scheduling approach, through a central department, called Central Services (CS), to 
respond to the maintenance requirements of manufacturing areas or Business Units (BUs). 
The aim of this department is to minimize the workforce costs as well as avoid long-term 
disruptions and shutdowns of the critical equipments within BUs. Each BU schedules their 
work requests and then submits them to CS which attempts to schedule the workforce on 
those work requests to meet the needs across the plant. Work requests represent PM tasks to 
return the associated equipment to the as-good-as-new condition (throughout this paper, we 
use the phrase ‘work request’ or briefly ‘work’ and PM task interchangeably). Given the 
number and variety of the work requests, and the number of workers and the variety of 
their skills, the CS department has found it very difficult to optimally schedule works in a 
reasonable time. 
The CS department satisfies labour requirements through internal and external resources, as 
regular time, overtime, and contract. The internal resource consists of a number of 
specialized groups with certain proficiency/skill for PM tasks, called field groups (FGs) 
such as mechanical, electrical, pipefitting and lubrication proficiencies. FGs are mobile 
groups, variable in size (number of members), which are responsible for PM/repair tasks at 
BUs. The external workforce is provided by contractors. Obviously, CS prefers to use the 
internal workforce in regular time and overtime (including weekends) and to use the 
contractors when they encounter the workforce shortage. CS manages the FGs to meet the 
demand of BUs, and supplements them with external forces. The PM schedule for each BU 
may be different for different periods depending upon the variety and failure nature of the 
existing assets and equipments. Thus, CS always encounters a new set of work requests in 
each period that must be scheduled, however, the required information of the work requests 
is known for CS in advance. In Figure 1, the relationship between CS, BUs and labour 
resources are shown schematically.  

2.1 Mapping the MWSP as a generalized job shop scheduling problem 
The MWSP can be considered as an extended job shop scheduling problem  in which each 
FG represents a machine type and each work request represents a job with a number of 
operations that must be processed on the predetermined machines according to certain 
precedence relations. The capacity of machines is limited in the given planning horizon. 
Each job has a known ready/submission time and must be completed before its due date. 
The conflicting objectives are the workforce cost minimization versus the BU/equipment 
availability maximization. The workforce cost can be interpreted as machine operating/idle 
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costs and the BU/equipment availability can be interpreted as the flow time of the 
associated job (see Section 2.2 for more details).  A schematic mapping of MWSP into a job 
shop scheduling problem with 4 FGs and 5 work requests is shown in Figure 2. Symbol 
“Wi” represents work i. Each work may be done by different FGs according to certain 
precedence relations. 
 

 
Fig. 1. Maintenance workforce management by Central Service 
 

 ←Planning horizon→  
Submission time         

         
W2 W4   W5    FG1 

        
W1 W2 W3      FG2 

        
W2  W4 W5     FG3 

        
 W1 W3 W2 W5   FG4 

    
Availability Regular time Overtime Contracting  

Fig. 2. Typical mapping of MWSP into job shop scheduling problem  
 

A typical example of precedence relations associated with work 2 is shown in Figure 3. As 
shown in this figure, FGs 1 and 3 can operate simultaneously; however, both FGs are 
preceding operations for FG 2, and also FG 2 is a preceding operation for FG 4. From 
mathematical point of view, the precedence relations shown in Figure 3 can be presented as 
a 0-1 matrix as shown in Figure 4. As Figure 4 indicates, we need overtime for FGs 1, 3 and 4 
to complete works 2, 3, and 5. Also, we need the external workforce as subcontracted 
workers for FG 4 to complete work 5. Moreover, the interference constraint between FGs 
causes some idle times during the operation time of FGs 1, 3 and 4. 

BU mBU 3 BU 2BU 1

CS 

Internal source
(FGs)

External 
resources

Regular time 

…

Work submission

Overtime Contractors 
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FG 1 2 3 4 
1 0 1 0 0 
2 0 0 0 1 
3 0 1 0 0 
4 0 0 0 0 

Fig. 3. Precedence relations between FGs for doing 
work 2 

Fig. 4. Matrix form presentation 
for the precedence relations of 
Work 2 

2.2 Scheduled and unscheduled shutdowns 
As pointed out earlier, each work i is submitted to CS at time ri and must be finished before 
due date di. ri is typically called submission time or earliest start (ES) time, and di is typically 
called the latest request (LR) or latest finish (LF) date. After submission, the process of the 
work will start in si where ES ≤ si and completed in ci, where ci ≤ LF. si is called the starting 
time, or “Time in”, and ci is called the completion time, or “Time out” of work i. Thus, the 
duration or processing time of work i is determined as si - ci (see Figure 5). This duration is 
also known as scheduled shutdown in which the asset or equipment will not be available in 
interval [si, ci]. However, sometimes an unscheduled shutdown is also considered for the 
work request which depends on the starting time of the work. Unscheduled shutdown is an 
approximated time interval that is estimated in terms of the magnitude of si. That is, by 
increasing si, the processing time of the work request (or equivalently the unavailability of 
the asset) will increase progressively because of the nature/mode of the failure. The 
unscheduled shutdown can be used to determine the importance degree (or weight) of the 
work request. The local objective of each BU is to minimize the flow time of corresponding 
work requests, i.e., to minimize fi = ci – LE. However, solely meeting this objective increases 
the workforce costs.  
 

 
Fig. 5. Scheduled and Unscheduled Shutdowns 

According to the above explanation, the MWSP considered in this study deals with two 
conflicting objectives: 
1. Minimization of the total weighted flow time (TWFT) of works (BUs ultimate objective). 
2. Minimization of the workforce costs (WfCs) consisting of fixed, overtime and 

contracting costs (one of the CS objectives) 

Duration 

ES LF 
Timesi ci 

1

3 

2 4
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2.3 Man-hour unit to measure the labour requirements 
The processing time of a work request is often a function of the number of assigned workers. 
That is, by increasing the number of assigned workers, the processing time of the work 
decreases with a decreasing slope. In such cases, we need a proper unit to measure work 
done. Man-hour is a common time unit used in industry for measuring work. For example, 
if the size of a FG is 5 and the number of working hours per day is 8, then 5×8=40 man-
hours are available per day for that FG. Thus, if a work request needs 10 man-hours, it can 
be done by one worker in 10 hours, or 2 workers in 5 hours, etc. Man-hour integrates the 
time and size of the labour requirements together. A number of studies can be found in 
which the labour requirements are estimated in terms of man-hour unit. For instance, in 
(Yanga et al., 2003), the maintenance department estimates that the short-term layover 
maintenance manpower demand in terms of man-hours, based on the available ground 
holding time slots, the different aircraft types, and the tasks required.  

2.4 Assumptions 
The assumptions of the problem can be summarized as follows: 
1. The length of the planning horizon is fixed and the work requests submitted in the 

current planning horizon will be scheduled for succeeding planning horizon.  
2. All work requests are submitted to CS during the current planning horizon with a 

known submission time.  
3. The labour requirement and the processing time (duration) of each work request by 

each FG are known in advance. 
4. Each work request has a known due date.  
5. Each FG has a certain proficiency which is provided by the internal resources as regular 

and overtime, or the external resources as contract.  
6. The number of members (size) of each FG in regular time, overtime and contacting is 

known in advance.  
7. The labour requirement for work requests is measured in terms of the “man-hour” unit.  
8. Workforce availability: The available man-hours for each FG as regular time, overtime 

and contract are known in advance.       
9. Workforce costs consist of fixed cost, overtime cost and contracting cost per man-hour. 

Obviously, the unit cost of contracting is greater than one of overtime.  
10. A fixed cost per man-hour is considered irrespective of the type of the workforce (i.e., 

internal or external). This cost can be interpreted as to include the transportation, tools, 
lunch and idle costs. 

11. Each FG can operate only one work request at a time.  
12. The scheduled shutdown of each work request is represented by its flow time. Flow 

time is defined as the difference between the completion time (time out) and 
submission time of the work request. 

13. A weight is also associated with each work request which measures the importance 
degree of the work request. This weight is determined in terms of the unscheduled 
shutdowns of the work request.  

After detailed explanation of the problem, it is worthwhile to briefly highlight how this 
study differs from previous works: 
1. We consider the total weighted flow time instead of Makespan. 
2. We consider the precedence relations between FGs to do a given work. 
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3. We consider workforces with different proficiencies, and overtime and subcontracted 
workers simultaneously. 

2.5 Typical data set 
For illustration, a typical data set with 10 work requests and 4 Field groups (mechanical, 
electrical, pipefitting and lubrication proficiencies) inspired by the real data is presented in 
this section. Consider a one-week planning horizon with 5 workdays and 2 holidays 
(weekend).  Each workday consists of 8 hours regular time and 4 hours overtime and each 
holiday includes 4 hours overtime for each internal worker. Moreover, 4 hours in each 
workday is available for each subcontracted worker as an external labour. Subcontracted 
workers don’t work on weekends. Other information related to work requests and FGs are 
presented in Tables 1 to 3. The expected duration of each work request by each FG (in terms 
of man-hour), submission time and unscheduled shutdown (in terms of hours), and also the 
weight of work requests are shown in Table 1. Table 2 shows the workforce availability in 
regular time, overtime and contracting. In Table 3, the precedence relations between FGs 
associated to each work are shown (in all tables FG stands for field group). 
 

Man-hour W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

FG1 0 0 19 8 6 0 0 0 8 0 

FG2 18 13 15 0 11 4 11 13 10 4 

FG3 15 2 17 11 18 15 3 0 12 0 

FG4 6 5 18 0 0 3 0 12 0 0 

Submission time 57.6 43.3 16.21 49.82 4.86 31.49 8.73 39.17 1.94 45.32 

Due date 170.86 109.78 214.26 115.12 117.11 102.81 99.94 119.49 112.41 113.51 

Shutdown 0.21 0.36 0.12 0.37 0.21 0.34 0.26 0.3 0.22 0.35 

Weight 0.58 0.98 0.33 1 0.58 0.92 0.72 0.81 0.59 0.96 
 

Table 1. Work request Information 
 

 Size  Cost per hour per man ($) Availability per day per man 
(hours) 

 Regular 
time Overtime Contracting Fixed 

Cost Overtime Contracting Regular 
time Overtime Contracting 

FG1 9 8 3 2 22 29 8 4 4 

FG2 9 5 3 4 24 27 8 4 4 

FG3 10 7 3 4 20 28 8 4 4 

FG4 8 6 2 4 24 28 8 4 4 
 

Table 2. Field group Information 
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FG W1 W2 W3 W4 W5 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 

2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 

3 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

4 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

FG W6 W7 W8 W9 W10 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 

3 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 3. Precedence relations 

3. Multi-objective simulated annealing 
As depicted earlier, MWSP is an extended version of the job shop scheduling problem and 
obviously it is NP-hard and cannot be solved in a reasonable time using an exact approach 
for the real-sized problems. This reasoning was a motivation to develop a MOSA approach 
to solve the MWSP.  In this section, the preliminary definitions and concepts of the multi-
objective optimization are presented to illustrate the performance of the MOSA. Also, the 
MOSA’s literature is completely reviewed. 

3.1 Multi-objective optimization 
In multi-objective optimization problems, we attempt to simultaneously optimize a number 
of conflicting objective functions in which the objectives are non-commensurable and the 
decision-maker has no clear preference for the objectives relative to each other. Without loss 
of generality, we will assume that all objectives are of the minimization type. A 
minimization multi-objective decision problem with K objectives is defined as follows: 
Given an n-dimensional solution space S of decision variables vectors X={x1,…,xn}, find a 
vector X* that satisfies a given set of criteria depending on K objective functions 
Z(X)={Z1(X),…ZK(X)}. We wish to find an “ideal” vector X* that minimizes all objective 
functions simultaneously which is usually not possible. The solution space S is generally 
restricted by a series of constraints, such as gj(X*) = bj for j= 1,…,m, and bounds on the 
decision variables. In many real-life problems, objectives under consideration conflict with 
each other. Hence, optimizing vector X with respect to a single objective often results in 
unacceptable results with respect to the other objectives. Therefore, a perfect multi-objective 
solution that simultaneously optimizes each objective function is almost impossible. A 
reasonable solution to a multi-objective problem is to investigate a set of solutions, each of 
which satisfies the objectives at an acceptable level, and without being dominated by any 
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other solution. We summarize the multi-objective optimization area within the following 
definitions (Zitzler & Thiele., 1998): 
• Dominant solution: If all objective functions are used for minimization, a feasible 

solution X is said to dominate another feasible solution Y ( X Y ), if Zi(X)≤Zi(Y) for 
i=1,…,K and Zi(X)<Zi(Y) for at least one objective function j.  

• Pareto optimal (Efficient) solution: A solution is said to be Pareto optimal if it is not 
dominated by any other solution in the solution space. A Pareto optimal solution 
cannot be improved with respect to any objective without worsening at least one of 
other objective.  

• Pareto optimal set: The set of all feasible non-dominated solutions in S is referred to as 
the Pareto optimal set. For many problems, the number of Pareto optimal solutions is 
enormous (perhaps infinite). 

• Pareto front: For a given Pareto optimal set, the corresponding objective function vector 
values in the objective space are called the Pareto front.  

The ultimate goal of a multi-objective optimization algorithm is to identify solutions in the 
Pareto optimal set.  

3.2 Literature on MOSA 
Numerous approaches have been developed in the literature with the aim of determining 
the Pareto optimal set using SA. A comprehensive review of SA based optimization 
algorithms to tackle multi-objective problems can be found in Suman & Kumar (2006).  The 
first MOSA method has been proposed by Serafini (1992). The algorithm of the method is 
almost the same as the algorithm of single objective SA. The method uses a modification of 
the acceptance criteria of solutions in the original algorithm. Various alternative criteria 
have been investigated in order to increase the probability of accepting non-dominated 
solutions. A special rule given by the combination of several criteria has been proposed in 
order to concentrate the search almost exclusively on the non-dominated solutions. 
Suppapitnarm & Parks (1999) proposed a multi objective SA method, namely 
Suppapitnarm-MOSA, in which only one solution is used and the annealing process adjusts 
each temperature independently according to the performance of the solution in each 
criterion during the search. The concept of archiving the Pareto optimal solutions with SA 
has been initially used by Suppapitnarm et al., (2000). In their study, an archive set stores all 
the non-dominated solutions between each of the multiple objectives. A new acceptance 
probability formulation based on an annealing schedule with multiple temperatures (one for 
each objective) has also been used. The acceptance probability of a new solution depends on 
whether or not it is added to the set of potentially Pareto-optimal solutions. If it is added to 
this set, it is accepted to be the current solution with probability equal to one. Otherwise, a 
multi-objective acceptance rule is used.  
Ulungo et al., (1999) proposed another MOSA method in which for a multi-objective 
problem, a move from the present position to a new position can result in three different 
possibilities:  
a) Improving moves with respect to all objectives is always accepted with probability one.  
b) Simultaneous improvement and deterioration with respect to different objectives. In 

this case neither the new move nor the current solution dominate. Therefore, the 
strategy devised must be sound enough to discriminate between the new and the 
current solutions.  

c) Deterioration with respect to all objectives is accepted with a given probability.  
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Their method uses a strategy called the criterion scalarizing strategy since probability to 
accept the new solution must take into account the distance between the old and the new 
move. This strategy maps the multi-dimensional criteria space into a one-dimensional space. 
Thus, this strategy works with a predefined diversified weight vector. This set of weights is 
uniformly generated. Two scalarizing functions have also been used: the weighted sum of 
objectives and the Chebyshev norm (Teghem et al., 2000).  
Czyzak, & Jaszkiewicz (2000) proposed a MOSA approach by combining SA with a genetic 
algorithm (GA). This method uses the concept of neighborhood, acceptance of new solutions 
with some probability and annealing schedule from SA and the concept of using a sample 
population of interacting solutions from GA. Their method uses scalarizing functions based 
on probabilities for accepting new solutions. In each iteration of the procedure, a set of 
solutions called generating samples controls the objective weights used in the acceptance 
probability. This assures that the generating solutions cover the whole set of efficient 
solutions. One can increase or decrease the probability of improving values of a particular 
objective by controlling the weights. The higher the weight associated with a given 
objective, the lower the probability of accepting moves that decrease the value of this 
objective and the greater the probability of improving the value of this objective.  
Suman (2002) proposed a MOSA approach to tackle the constraint violations. The proposed 
MOSA attempts to handle constraints within its main algorithm by using a weight vector in 
the acceptance criterion by directing the move towards the feasible solutions. It does not use 
any extra techniques such as the penalty function approach to handle constraints. It has 
been shown that the substantial reduction in computational time can be achieved without 
worsening the quality of solution with this method. The weight vector depends on the 
number of constraints violated by the given solution and the objective function. Suman 
(2005) proposed a MOSA approach using Pareto-domination-based acceptance criterion. He 
uses an idea that a strategy of Pareto-domination based fitness can easily be adapted to 
simulate annealing in the acceptance criterion. Here, fitness of a solution is defined as one 
plus the number of dominating solutions in Pareto-optimal set (containing both feasible as 
well as infeasible solutions). The larger the value of fitness, the worse the solution. Initially, 
the fitness difference between the current and the generated solution is small and the 
temperature is high so any move is accepted. This gives us a way to explore the full solution 
space. As the number of iterations increases, temperature decreases and fitness difference 
between the current and generated solutions may increase. Both make the acceptance move 
more selective and it results in a well-diversified solution in true Pareto-optimal solutions.  
Most of the proposed MOSA approaches, except Suppapitnarm-MOSA, use a kind of 
scalarizing function for combining the objectives into a weighted summation term as 
fitness/energy function to evaluate the solutions. However, it is unclear how to choose the 
weights in advance. Indeed, one of the principal advantages of multi-objective optimization 
is that the relative importance of the objectives can be decided with the Pareto front on 
hand. To overcome this disadvantage, Smit et al., (2004) proposed a dominance based 
energy function. According to this function, the energy value of solution x is equal to the 
cardinality of set Fx ⊂ F where F is the best Pareto front obtained so far (archive of the 
estimated Pareto front) and subset Fx contains all solutions belong to F that dominate x. This 
function ensures that the new solutions that move the estimated front towards the true 
(ultimate) Pareto front are always accepted. As the authors claim, a benefit of this energy 
function is that it encourages exploration of sparsely populated regions of the front. 
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However, the performance of this function highly depends on the cardinality of set F. That 
is, when F is small the resolution in the energies can be very coarse, leading to a low 
resolution in acceptance probabilities. To overcome this disadvantage, they artificially 
increased the size of F using three methods: conditional removal of dominated points, linear 
interpolation and attainment surface sampling.  

4. MOSA to solve MWSP 
The consideration of precedence relations in addition to interference relations causes the 
size of the feasible space to decrease; however, it doesn’t mean the Pareto optimal set will be 
achieved simply. Contrariwise, the ultimate Pareto optimal set will be difficult to access, 
especially when the size of the problem increases. In this case, the population-based 
algorithms such as Genetic Algorithms lead to infeasible solutions most of the time. This 
reasoning became a motivation to select a single solution-based meta-heuristics such as SA 
to solve the considered problem.  
In our opinion, the method proposed by Suppapitnarm et al., (2000) is one of the best in the 
context of the MOSA. In this method, we don’t need to determine a weight for each 
objective function while all objectives affect the acceptance probability of the non-improver 
solutions. Moreover, a new solution is accepted if it can be added to the best Pareto archive 
set obtained so far.  This strategy guarantees the continuous improvement of the current 
Pareto front toward the ultimate one. Thus, we use Suppapitnarm-MOSA to solve the 
MWSP. The specialization of the Suppapitnarm-MOSA to solve the MWSP is presented in 
the following subsections, using the nomenclature presented in the Appendix. 

4.1 Initial Temperature 
According to the fundamental concepts of SA, non-improver solutions are accepted in the 
primary iterations with high probability. Thus, we set the initial temperature (for each 
objective) in such a way that the non-improver solutions are accepted with a probability of 
about 95 percent in the primary iterations. The related pseudo code is shown in Figure 9 
(Safaei et al., 2008). Parameter Q represents the number of samples. 
 

Sub Initial_Temperature( ) 
 For k=1 to K   
   For q=1 to Q  
       Do 
         Generate two solutions X1 and X2 at random 
         LOOP UNTIL (Z(X1) ≠ Z(X2)) 

         Set 1 20 ( ) ( )
ln(0.95)

k k
q

Z X Z X
T

−
=

−
 

      Next q 
     Set 0

0 1
(1/ ) Qk

qq
T Q T

=
= ∑  

  Next k 
 End Sub 

Fig. 9. Pseudo code of the initial temperature generation subroutine  
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4.2. Solution representation 
The main objective of the MWSP in this study is to determine the sequence of work requests 
(works, for short) that must be done by each FG in such a way that some objectives are 
optimized. Thus, the solution representation must determine the sequence of operating 
works for each FG. To this propose, we consider a matrix consisting of K rows (number of 
FGs) and M columns (number of works) to represent the solution to the MWSP. The solution 
representation is shown in Figure 10 for typical solution X=[xi[j]]K×M where xi[j] =w means 
that work w must be scheduled on jth position (i.e., [j]) in the sequence of works associated 
with FG i.  It should be noted that some of the entries in the solution representation are 
inherently zero/null because all works need not be done by all FGs. For more clarity, an 
example solution related to the data set presented in section 2.5 is shown in Figure 11. 
 

 W[1] W[2] … W[j] … W[M] 
FG1 x1[1] x1[2]  x1[j]  x1[M] 
FG2 x2[1] x2[2]  x2[j]  x2[M] 

       
FGi xi[1] xi[2]  xi[j]  xi[M] 

       
FGK xK[1] xK[2]  xK[j]  xK[M] 

Fig. 10. Solution Representation 
 

 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 
FG1 4 5 3 9 - - - - - - 
FG2 5 8 2 10 6 7 3 9 1 - 
FG3 4 5 7 3 6 2 9 1 - - 
FG4 3 8 1 6 2 - - - - - 

Fig 11. An example solution for data set presented in section 2.5 

4.3 Initial solution generation 
In general, for better exploration of the feasible space, the initial solution is generated at 
random. However, as discussed in Section 2, MWSP is actually a generalized job shop 
scheduling problem with precedence constraints in addition to interference constraints 
inherently embedded in the scheduling problems. Thus, the generating of a random solution 
which simultaneously satisfies both precedence and interference constraints is one of the 
most important portions of this research that makes it different from workforce scheduling 
problems described in the literature. In this case, the applied approach for generating the 
initial solution must maintain the CPU time on an acceptable level and use advantages of 
the random generation. 
To overcome this drawback, we introduce a recursive-sequential approach in which at each 
iteration i, the sequence of works corresponding to FGi is randomly generated considering 
the history of assignments in previous FGs 1,…, i-1 as well as the precedence relations. The 
recursive procedure verifies the feasibility of the current assignment. This procedure uses 
the information given in the matrix S =[sil]K×K where 2 1... KS R R R −= ⊕ ⊕ ⊕ , in which sil 
∈{0,1}, R=[ril]K×K; ril ∈{0,1} is the precedence relation matrix for a given work (see Figure 3) 
and ⊕ represents the Boolean summation operator  (Seyed-Hosseini et al., 2006). Matrix S 
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consists of all direct and indirect precedence relations between FGs to do a given work. In 
other words, sil =1 means FGi is prior to FGl directly (i→l) or indirectly (i→…→l). This 
recursive procedure prevents the creation of the infinite loop during the sequential 
assignment process. An infinite loop is a sequence of the precedence and interference 
relations that loops endlessly. A typical example of the infinite loop is shown in Figure 12. In 
this figure, both works A and B must be done by both FGs i and l. However, FGl is directly 
prior to FGi, i.e., l → i, for work A and contrariwise FGi is indirectly prior to FGl for work B, 
i.e., i → k → l, where i<l<k. Assume that the sequence of works for FGi is already created 
according to the sequential phase of the approach. Moreover, the sequence of works for FGl 
is being preceded and for FGk has not created yet. Currently, work A is randomly selected 
and would be scheduled immediately after work C on FGl. We want to check the feasibility 
of this assignment. The completion time of work A on FGl is obtained as lA lA lCct pt ct= + . 
Without loss of generality, we define the term a⊂b that means for obtaining parameter a, 
parameter b must already be determined. Thus, we have lA lCct ct⊂ . Using the backward 
recursive algorithm, the following infinite loop is obtained: 

lC lB iB iA lA lCct ct ct ct ct ct⊂ ⊂ ⊂ ⊂ ⊂ . Thus, the assignment presented in Figure 11 is 
infeasible. Consequently, the proposed approach doesn’t allow that work A is scheduled 
after work B on FGl and so it must be scheduled before work B. 
 

 
Fig 12. Typical infinite loop 

As an example, according to the precedence relations given in Table 3, for work 3, we have 
(1→3) and for work 4, we have (3→1). Assume that works 3 and 4 are swapped together on 
FG 3 in the solution presented in Figure 11. Thus, we encounter an infinite loop as: ct34⊂ 
ct37⊂ ct35⊂ ct33⊂ ct13⊂ ct15⊂ ct14⊂ ct34. Thus, work 4 cannot be scheduled anywhere after work 
3 on FG 3, if the sequence of works for FG 1 has already been fixed.   

4.4 Neighbourhood solution generation 
The swapping adjacent pair method is used to generate the neighbourhood solutions.  At 
first, two adjacent works on a FG are randomly selected and then are swapped together. The 
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feasibility of this change is checked by the recursive procedure explained in the previous 
section.  
A stochastic sampling scheme of size 1000 within the objective function space is used to 
verify the efficiency of the applied strategy. The scatter diagram corresponding to this 
sampling is shown in Figure 13. Point A represents the initial solution and other points are 
generated by the swapping adjacent pair method. Point B is associated with the best 
obtained solution. As it can be seen in this figure, this method can correctly navigate the 
solution space. Our reason for it is that the generated solutions have an improvement trend 
in terms of the objective function values as the best obtained solution (Point B) improves 
each objective function by about 50% compared with the initial solution (Point A). It should 
be noted that this sampling is completely random, without using an improvement criterion. 
In other words, the results indicate that the probability of the improver movements is 
significantly greater than non-improver ones and hence the strategy used is a proper one to 
explore the solution space. 
 

 
Fig 13. Scatter diagram related to the stochastic sampling of the neighbourhood solution 
generation method 

4.5. Cooling schedule 
The classical cooling schedule of SA is used for each temperature (one for each objective) as 

1
k k

t tT Tα −= where α is the cooling rate or decrement factor and k=1,2.  

4.6 Fitness function 
As mentioned in Section 3, the MWSP involves two conflicting objectives: minimizing the 
TWFT versus minimizing the WfC. Even though, the generated solutions satisfy the 
precedence and interference constraints, there are still two restrictions which must be 
considered by the generated solutions. These two restrictions are the due date of the works 
and the workforce resource limitations in regular time, overtime and contracting. To this 
end, we consider two penalty functions, one for each objective. The first penalty function 
(PF1) that is added to the first objective as Z1=TWFT+λPF1 penalizes the solutions violating 
the due date of some works. Parameter λ represents the penalty coefficient which is a large 
positive number. Likewise, the second penalty function (PF2) that is added to the second 
objective as Z2=WfC+λPF2 penalizes the solutions violating the workforce limitations. These 
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penalty functions lead the infeasible solutions toward feasible space. The mathematical 
expressions of the obtained fitness functions are given in Eq. (1) and (2):  

 ( ) { }1
1 1

min  max ,0
M M

m m m m m
m m

Z w rw r rw dλ
= =

= − + −∑ ∑ , (1) 

( ){ }(2
1

min max min , ,0
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k k k k k k k k k k
k

Z c rf c rf s h s h s h
=

′ ′ ′= + + −∑  

            
( ){ })max min , ,0k k k k k k k k k k kc rf s h s h s h s h s h′′ ′ ′ ′′ ′′ ′ ′+ + + − −

 

 ( ){ }
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K

k k k k k
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The release time of work m is recursively computed as follows: 

 { } { }{ }1  ; 1
max ;  max max , ,  , 1, 2,..., ,

mlk
m km km km lm kn mk K l p

rw ct ct pt ct ct r m M
≤ ≤ =

= = + =  (3) 

where n represents the work that must be scheduled immediately before work m for FG k. 
Initial values are 1 1k kct pt= for each k. 

4.7 Acceptance strategy 
Similar to the SMOSA, an archive set stores all the non-dominated/Pareto solutions 
between each of the multiple objectives. The acceptance probability of a new solution 
depends on whether or not it is added to the set of potentially Pareto-optimal solutions. If it 
is added to this set, it is accepted to be the current solution with probability equal to one. 
Otherwise, it is accepted with the following probability. 

 1 2

1 2

- -min 1,exp expZ Zp
T T

⎧ ⎫⎛ ⎞ ⎛ ⎞Δ Δ⎪ ⎪= ×⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

. (4) 

In Eq. (4), ( ) ( )k k kZ Z Y Z XΔ = −  in which X is the current solution and Y is a neighbourhood 
solution resulting from X using the neighbourhood solution generation method. 

4.8 Stoppage criteria  
The MOSA algorithm is stopped when one of the following criteria is satisfied: 
1. Maximum number of consecutive temperature trails (R). 
2. Minimum allowable value of temperatures (final temperature) (Tf). 
3. Maximum elapsed time after the last updating of Pareto archive set (tmax). 

4.9 Lower bounds for objective functions 
As mentioned before, a large amount of time is needed to obtain the Pareto optimal set for 
MWSP. Hence, due to unavailability of Pareto optimal set for comparison and having an 
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idea about the quality of the obtained Pareto solutions, a traditional methodology is to 
compare the lower bound of the objective functions with the obtained Pareto front. In this 
study, we use two different methods to obtain the lower bound of TWFT and WfC. The 
lower bound of the first objective function, TWFTLB, is computed assuming the processing of 
each work by each FG is started immediately after submission or equivalently after 
completion by the preceding FGs (no-wait strategy). The mathematical expression of 
TWFTLB is given in Eq. (5):  

( )
1

- , 
M

LB
LB m m m

m
TWFT w rw r

=

= ∑  

 { } { }{ }LB LB LB LB

1 : 1 
max ;  max max , ,

mkl
m km km km lm mk K l p

rw ct ct pt ct r
≤ ≤ =

= = +  (5) 

where LB
kmct  represents the possible earliest time of completing processing of work m by FGk. 

The possible earliest time occurs when the processing of work m is started immediately after 
submission by BU or completion by the preceding FGs. Initial values are 1 1

LB
k kct pt= for each 

k. The lower bound for the second objective function, WfCLB, is computed according to the 
FIFO strategy in which the works are scheduled for each FG in increasing order of their 
arriving times. In this case, FGs are scheduled independently as a single-machine 
scheduling problem. 
Although, the solutions under the obtained lower bounds are not necessarily feasible, the 
obtained lower bounds can be considered as a criterion to measure the goodness of the 
obtained Pareto front. In this case, we say the performance of the solution method is 
acceptable, if under the same conditions, the relative gap (distance) between lower bounds 
and obtained Pareto front is relatively small or at least does not increase significantly, while 
the size of the problem increases. It is worth noting that the difference between TWFTLB and 
its optimal value will increase while the size of the problem increases. It is because the 
precedence relations cause the waiting time of the in-process works to increase significantly.  

5. Computational results 
In this section, we verify the performance of the developed MOSA to solve the MWSP using 
a number of numerical examples. Numerical examples are inspired by the real data and 
generated randomly in pre-defined intervals. Ten numerical examples with 10, …, 100, 
works and 4 FGs are generated and solved by the developed MOSA. The details of these 
examples are not given here. The number of FGs is constant for all problems, as in the real 
case. MOSA is developed by Visual Basic 2008 on an x64-based multi-processor personal 
computer with 8 Intel Xeon processors and 2 GB memory. Each numerical example is solved 
10 times and the best Pareto solutions obtained are reported and then the corresponding 
Pareto front is compared with the lower bound of the objectives. The parameter setting of 
the developed MOSA is shown in Table 4. For tuning the MOSA’s parameters, some 
examples with different sets of parameters were solved. In the end, we found that the 
following parameter setting was effective to solve the MWSP. As it is evident from Table 4, 
parameters N and R are considered as linear functions in terms of the problem size. 
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Parameter Q α N R Tf tmax λ 
Value M/2 0.95 10M 10M 0.01 120 Sec. 10 

Table 4. MOSA parameter setting 

In the first step, the numerical example presented in Section 2.5 is solved and the best Pareto 
solutions are reported in Table 5. The average and standard deviation (SD) of TWFT and 
WfC values associated with the obtained Pareto solutions are also presented in this table. As 
it is evident from Table 5, the small values of SD imply that the algorithm converges to a 
small region of the objective space. That means that the distance between the obtained 
Pareto solutions is insignificant and the solutions have a relatively identical importance 
degree from the decision making point of view. The small values of SD can be the necessary 
condition for efficiency of the proposed method. However, the sufficient condition for 
efficiency is that the ultimate/optimal Pareto front is also in this small region. This issue will 
be discussed in below this section. For more clarity, the Pareto front associated with the 
Pareto set indicated in Table 5 is shown in Figure 14.  
 

Pareto No. TWFT WfC 
1 244.17 1531.48 
2 259.76 1441.06 
3 268.88 1433.06 
4 247.18 1491.48 
5 251.96 1453.36 
6 265.99 1435.16 
7 248.95 1469.92 
8 254.39 1443.16 

Average 255.16 1462.33 
S.D 8.94 34.19 

Table 5. Best Pareto solutions associated with the data set from Section 2.5 
 

 
Fig 14. Pareto front associated with the Pareto set indicated in Table 5 
Likewise, the information related to the obtained Pareto solutions and Pareto front for the 
numerical example with 20 works, i.e., 20×4, is provided in Table 6 and Figure 15. The same 
reasoning applicable to the first test problem is also applicable to the second one.  
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Pareto No. TWFT WfC 
1 147.77 1173.10 
2 148.31 1171.42 
3 149.30 1171.42 
4 149.90 1157.10 
5 151.10 1139.42 
6 152.63 1129.74 
7 155.84 1127.42 
8 156.13 1123.58 
9 157.86 1121.26 

10 158.09 1117.26 
11 158.66 1115.34 

Average 153.24 1140.64 
S.D 4.18 23.16 

Table 6. Best Pareto solutions associated to problem 20×4 
 

 
Fig 15. Pareto front associated with the Pareto set indicated in Table 6 

The obtained results associated with the different real-sized problems are summarized in 
Table 7 in terms of the mean of objective values, i.e., TWFTM and WfCM, corresponding to 
Pareto solutions, lower bounds, CPU time, and relative gaps. The relative gap between 
TWFTM and TWFTLB is computed as their ratio. The relative gap between WfCM and WfCLB is 
computed as the relative difference between WfCM and WfCLB, that is [(WfCM-
WfCLB)/WfCLB]×100. As shown in Table 7, by increasing the size of the problems, TWFT_Gap 
doesn’t necessarily increase. Moreover, WfC_Gap is significantly small, which means that 
the obtained WfCM values are very close to the optimal ones. Thus, according to the 
discussion presented in Section 4.9 and earlier in this section, we can conclude the 
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developed MOSA is a proper and robust approach to solve the considered MWSP. The 
trend of the CPU time shown in Figure 16 can be estimated by the formula 
CPUtime=51.21M2-216M+400, with R2= 0.97, which means the developed MOSA algorithm 
is of a polynomial order, with a complexity degree O(M2). 
 

Test Problem Objective mean Lower bound Gap 

Size 
Planning 

cycle  
(week) 

TWFTM WfCM TWFTLB WfCLB 

CPU 
time 
(Sec.) M

LB

TWFT
TWFT

 
WfC (%) 

10×4 1 255.16 1462.33 161.39 1321 34 1.58 10.69 

20×4 1 153.24 1140.64 64.56 1080.70 252 2.37 5.54 

30×4 1 637.53 1065.14 95.5 1005.84 329 6.67 5.89 

40×4 2 173.72 2064.66 66.9 2062.5 528 2.59 0.10 

50×4 2 186.97 1699.55 67.48 1680.34 648 2.77 1.14 

60×4 2 179.86 1820.8 59.17 1800.88 978 3.03 1.10 

70×4 2 572.18 2193.2 92.31 2117.34 1136 6.19 3.58 

80×4 2 248.07 2047.41 34.66 1991 1866 7.15 2.83 

90×4 2 280.09 2618.21 34.69 2568.7 2416 8.07 1.92 

100×4 2 386.45 1614.55 59.89 1539 3612 6.45 4.90 
 

Table 7. Comparison between Pareto fronts and lower bound values 

 

 
 

Fig 16. Trend of CPU times according to the information provided in Table 7 
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6. Conclusion 
In this chapter, we proposed a multi-objective simulated annealing (MOSA) algorithm to 
solve a real maintenance workforce scheduling problem (MWSP) with the aim of 
simultaneously minimizing the workforce cost and the flow time of the work requests. The 
latter objective is equivalent to the maximization of the equipment availability because by 
increasing the flow time of a work request the unscheduled shutdown of the corresponding 
asset will increase too. Workforces have different proficiencies and are grouped into a 
number of teams called “Field Groups” (or FG for short). Labour requirements are provided 
from internal and external resources as regular time, overtime and contract. 
We use a MOSA algorithm introduced in the literature namely Suppapitnarm-MOSA to 
solve the MWSP. In this method, an archive set stores all the non-dominated/Pareto 
solutions between each of the multiple objectives. The acceptance probability of a new 
solution depends on whether or not it is added to the set of potentially Pareto optimal set. 
However, all objectives affect the acceptance probability of a non-improver solution. The 
developed MOSA uses the swapping adjacent pair strategy to explore the feasible solution.   
One of the main differences between the current study and previous ones is that we 
consider the precedence relations between FGs to do a given work request, in addition to 
the traditional interference relations between work requests that must be scheduled for a 
given FG. This extra assumption is a big obstacle to generating the feasible or 
neighbourhood solutions. Hence, the single solution-based meta-heuristics such as SA or 
Tabu search seem to be the unique alternatives to solve this problem. This is because 
population-based operators, such as crossover in Genetic Algorithm, lead to infeasible 
solutions most of the time.  
 To overcome this drawback, we introduce a recursive-sequential approach to construct the 
sequence of works for each FG with the aim of identifying the infinite loops resulting from 
consecutive interference and precedence relations.  
Because the Pareto optimal set cannot be obtained in real-sized problems, a lower bound 
was developed separately for each objective function and the obtained Pareto front is 
compared with these lower bounds. 
The obtained results show that the developed MOSA is a robust method to solve the MWSP. 
Our reasoning is that the developed MOSA always converges to a small region of the 
feasible space, very close to the lower bound of one of the objective functions while the 
relative difference between the obtained results and the lower bound of another objective 
function doesn’t increase significantly when the size of the problem increases.    
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Appendix: Nomenclature 

MWSP: 
M number of work requests (m=1,2,…,M) 

K number of FGs (k = 1,2,…,K)    

rm  submission (ready) time of  work m 

ptmk  man-hours required for FGk to process work m. This parameter is interpreted as the 
               duration or processing time of work m by FGk 

amk =1 if work m must be operated by FGk; and =0 otherwise  

pmkl =1 if FGl must operate immediately before FGk on work m; and =0 otherwise  
               (precedence relations)  

hk hours available for FGk in regular time during the planning horizon 

h′k hours available for FGk in overtime during the planning horizon 

h″k hours available for FGk in contracting time during the planning horizon 

sk size of FGk in regular time during the planning horizon 

s′k size of FGk in overtime during the planning horizon 

s″k size of FGk as contract during the planning horizon 

ck fixed cost of FGk per hour 

c′k unit cost of FGk per hour in overtime 

c″k unit cost of FGk per hour in contracting time 

wm weight (or importance degree) of work request w. We assume that 
/max { }m m m mw τ τ= , where τm represents the unscheduled shutdown of work m 

ctmk completion time of work m by FGk  

rwm  release time of work m. The difference between rwm and rm is interpreted as  
                shutdown of work m 

rfm release time of FGk 

MOSA: 
α  rate of cooling (decrement factor) 

0
kT  initial temperature for objective k 

k
tT  system temperature in iteration t associated with objective k 

Tf final temperature  
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Zk(X) value of objective function k (or fitness function) for solution X. Here, k=1,2 

N number of accepted solutions in each temperature (Epoch Length) 

R maximum number of consecutive temperature trails 



3 

Using Simulated Annealing for Open Shop 
Scheduling with Sum Criteria 

Michael Andresen, Heidemarie Bräsel, Mathias Plauschin 
 and Frank Werner 

Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik 
Germany 

1. Introduction 
In this chapter, we consider the open shop scheduling problem which can be described as 
follows. A set of n jobs J1, J2, . . . , Jn has to be processed on a set of m machines M1,M2, . . . , 
Mm. The processing of job Ji on machine Mj is denoted as operation (i, j), and the sequence in 
which the operations of a job are processed on the machines is arbitrary. Moreover, each 
machine can process at most one job at a time and each job can be processed on at most one 
machine at a time. 
Such an open shop environment arises in many industrial applications. For example, 
consider a large aircraft garage with specialized work-centers. An airplane may require 
repairs on its engine and electrical circuit system. These two tasks may be carried out in any 
order but it is not possible to do these tasks on the same plane simultaneously. Further 
applications of open shop scheduling problems in automobile repair, quality control centers, 
semiconductor manufacturing, teacher-class assignments, examination scheduling, and 
satellite communications are described by Kubiak et al. (1991), Liu and Bulfin (1987) and 
Prins (1994). 
For each job Ji, i = 1, 2, . . . , n, there may be given a release date ri ≥ 0 which is the earliest 
possible time when the first operation of this job may start, a weight wi and a due date di ≥ 0 
by which the job should be completed. The processing time of operation (i, j) is denoted as 
tij. It is assumed that the processing times of all operations are assumed to be given in 
advance. 
Let Ci be the completion time of job Ji, i.e. the time when the last operation of this job is 
completed. Traditional optimization criteria are basically partitioned into two types: either 
the minimization of the maximum term max 1≤i≤n {fi(Ci)} or of the sum 1 ( )n

i i if C=∑  is 
considered, where fi(Ci) denotes the cost arising when job Ji is completed at time Ci. A typical 
example of an optimization criterion of the first type is the minimization of makespan  
Cmax = max 1≤i≤n {Ci}, while a rather general example of a criterion of the second type is the 
minimization of total weighted tardiness 1 1 max{0, }n n

i i i i i i iwT w C d= == −∑ ∑ . If release dates 

of the jobs are given, the latter problem is also denoted as 0i i iO r wT≥ ∑  which is the most 

general problem considered in this study. 
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In the following, we first give a few comments on the open shop problem with minimizing 
the makespan Cmax and then a literature review on such problems with sum optimization 
criteria. Here we discuss only some papers dealing with arbitrary processing times. 
Most papers in the literature dealt with the minimization of makespan. In view of the NP-
hardness of problem O||Cmax, branch and bound as well as heuristic algorithms have been 
developed for this problem. Among the exact algorithms, we only mention those given by 
Laborie (2005) and Tamura et al. (2006) which were able to solve open benchmark instances 
from the recent literature. In Laborie (2005), a complete search for cumulative scheduling 
based on the detection and resolution of minimal critical sets was performed. The heuristic 
for selecting such sets relied on an estimation of the related reduction of the search space, 
where additionally an extension of the search procedure using a selfadapted shaving was 
proposed. This approach was implemented on the top of classical constraint propagation 
algorithms. The algorithm was able to solve the remaining 34 open instances out of the 80 
instances with up to 10 jobs and 10 machines given by Gueret and Prins (1999). In Tamura et 
al. (2006), a method to encode constraint satisfaction problems with integer linear 
constraints into Boolean satisfiability problems was proposed. The effectiveness of this 
approach was tested on several benchmark instances for the open shop problem. In 
particular, this algorithm was able to solve all the 192 benchmark instances of three sets 
from the literature (Brucker et al. (1997), Gueret & Prins (1999), Taillard (1993)). 
Among metaheuristic algorithms, we only discuss two papers presenting simulated 
annealing algorithms. The first algorithm by Liaw (1999) used particular neighborhoods 
based on up to three pairwise interchanges of two adjacent operations belonging to the same 
job or being processed on the same machine such that the resulting neighbor satisfies a 
necessary condition for an improvement of the objective function value. The cooling scheme 
was of the geometric type and used an initial temperature of 15. The recommended variant 
had a low temperature reduction scheme (it used a reduction factor of 0.995 for the 
temperature). The number of iterations with a constant temperature was set to be equal to  
30 · n · m. Taking into account that at least 100 epochs with constant temperatures have been 
considered per run in Liaw (1999) (usually even substantially more epochs), this means that 
e.g. for problems with 20 jobs and 20 machines, at least 30 · 20 · 20 · 100 = 1, 200, 000 
iterations had to be performed. Moreover, since five runs were made for each instance and 
in one iteration of the algorithm, up to four neighbors were checked (see neighborhood NH1 

in Liaw (1999)) and the best neighbor among them was then taken, much more than  
6, 000, 000 feasible solutions had to be evaluated per instance to get the results presented in 
Liaw (1999). Thus, extremely long runs of simulated annealing were considered in that 
paper (up to 3.5 hours per single run of an instance with n = m = 30). On the other side, the 
quality of the solutions obtained was comparable to the results obtained by the insertion 
algorithm combined with beam search given in Bräsel et al. (1993). In particular, comparing 
the best results of some beam-insert variant from Bräsel et al. (1993) with the best of the five 
runs of the simulated annealing algorithm from Liaw (1999) on the 30 benchmark instances 
with n = m ∈ {10, 20, 30} given by Taillard (1993), the results were equal for 18 instances, 8 
times the simulated annealing algorithm was better and four times the beam-insert 
algorithm was better. A particle swarm algorithm combined with simulated annealing has 
been given by Yang et al. (2006). For the simulated annealing routine, a very small initial 
temperature of 2 was used. Computational results have been presented for some benchmark 
instances with up to 20 jobs and machines given by Taillard (1993) (however, the values 
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stated as best known solutions in Yang et al. (2006) are rather far away from the real best 
known solutions so that also the results presented in that paper are not competitive). For a 
discussion of further exact and heuristic algorithms for open shop problems with 
minimizing the makespan, the reader is referred to Andresen et al. (2008). 
There exist only a few papers considering sum criteria. First, we discuss the papers dealing 
with minimization of mean flow time (or what is the same, total completion time) in an open 
shop. If preemptions are allowed, the two-machine problem is NP-hard in the ordinary 
sense (Du & Leung (1990)) while the three-machine preemptive problem is NP-hard in the 
strong sense (Liu & Bulfin (1985)). For problem iO pmtn C∑ , Bräsel & Hennes (2004) 
derived lower bounds and heuristics which have been tested on problems with up to 50 jobs 
and 50 machines. For problems with a small number of jobs, the results with the heuristics 
have been compared to the optimal solutions found by an exact algorithm. 
Concerning non-preemptive problems, Achugbue & Chin (1982) proved that problem 

2 iO C∑ is NP-hard in the strong sense. Liaw et al. (2002) considered the problem of 
minimizing total completion time with a given sequence of jobs on one machine. This 
problem is NP-hard in the strong sense even in the case of two machines. A lower bound 
has been derived based on the optimal solution of a relaxed problem in which the 
operations on every machine may overlap except for the machine with a given sequence of 
jobs. Although the relaxed problem is NP-hard in the ordinary sense, it can nevertheless be 
rather quickly solved via a decomposition into subset-sum problems. Moreover, a branch 
and bound algorithm has been presented and tested on problems with n = m. The algorithm 
was able to solve all problems with 6 jobs in 15 minutes on average and most problems with 
7 jobs within a time limit of 50 hours with an average computation time of about 15 hours 
for the solved problems. A heuristic algorithm has been given which consists of two major 
components: a one-pass heuristic generating a complete schedule at each iteration, and an 
adjustment strategy to adjust the parameter used in each iteration. This algorithm has been 
tested on square problems with up to 30 jobs and 30 machines. For the small problems with 
at most 7 jobs, the average percentage deviation from the optimal value was about 4 % while 
for larger problems, the average percentage deviation from the lower bound was about 8 %. 
Bräsel et al. (2008) presented a computational study of heuristic constructive algorithms for 
mean flow time open shop scheduling. They compared matching heuristics, priority 
dispatching rules as well as insertion and appending algorithms combined with beam 
search on problems with up to 50 jobs and 50 machines, respectively. From Bräsel et al. 
(2008), it followed that the choice of an appropriate constructive algorithm strongly depends 
on the ratio n/m. In particular, it turned out that for problems with n > m, the rather fast 
algorithm beam-append was superior while for problems with n < m, the more time-
consuming algorithm beam-insert gave the best results. For the square problems with n = m, 
an overlapping has been observed: For small problems, the beam-insert algorithm was 
slightly superior while for larger problems, variants of the beam-append algorithm were 
better. However, the algorithms were rather sensitive with respect to parameter settings. 
Andresen et al. (2008) presented a simulated annealing and a genetic algorithm for the 
problem of minimizing mean flow time. They tested their algorithms on problems with up 
to 50 jobs when performing short runs, where every algorithm may generate 30,000 
solutions. It has been found that in contrast to makespan minimization, the hardest 
problems are those with n > m, while for problems with n < m, often a lower bound for the 
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corresponding preemptive open shop problem (Bräsel & Hennes (2008)) was reached. For 
the hard problems, it was essential to use a good constructive initial solution and to start the 
simulated annealing algorithm with an extremely small temperature. 
Concerning approximation algorithms with a performance guarantee, the currently best 
result has been given by Queyranne and Sviridenko (2000, 2002). They presented a 5.83-
approximation algorithm for the non-preemptive open shop problem of minimizing 
weighted mean flow time which was based on linear programming relaxations in the 
operation completion times. This was used to generate precedence constraints. For the 
preemptive version of this problem, a 3-approximation algorithm has been given. 
There exist some papers dealing with open shop problems and other optimization criteria 
than makespan and mean flow time. Liaw (2004) gave a dynamic programming algorithm 
for the two-machine preemptive problem of minimizing total weighted completion time. 
Moreover, a restricted variant was given as a heuristic which was based on pairwise 
interchanges in the job completion time sequence, i.e. the sequence in which the jobs are 
ordered according to non-decreasing completion times. Computational experience has 
shown that the dynamic programming algorithm can handle problems with up to 30 jobs 
and that the heuristic has an average percentage deviation of less than 0.5 % from the 
optimal value for these problems. 
Liaw (2005) presented a branch and bound algorithm for the preemptive open shop problem 
to minimize total tardiness. Computational results for the two-machine problem showed 
that the algorithm can handle problems with up to 30 jobs. A heuristic procedure was also 
given which determined in the q-th iteration the job to be placed in position q in the 
sequence of the jobs ordered according to non-decreasing completion times. This was done 
by means of the repeated solution of linear programs. The solutions obtained by the 
heuristic algorithm had an average deviation of less than 2 % from the optimal value. 
Blazewicz et al. (2004) considered open shop problems with a common due date, where the 
goal is to minimize total weighted late work, i.e. the weighted portion processed after the 
common due date. In addition to some complexity results, a polynomial algorithm for the 
two-machine problem of minimizing total late work and a pseudo-polynomial algorithm for 
the corresponding weighted case have been given. 
In this chapter, we investigate the application of simulated annealing to open shop 
scheduling problems with different sum criteria. The most general problem considered in 
this work deals with the minimization of total weighted tardiness subject to given release 
dates. Preemptions of operations are forbidden. The remainder of the chapter is organized 
as follows. In Section 2, we introduce the mathematical model used for describing feasible 
solutions. In Section 3, we discuss the components of the simulated annealing algorithms 
considered in our study. A detailed comparative study for the different types of problems is 
presented in Section 4. In particular, we discuss the influence of the initial solution, the 
parameters of the algorithms and the problem type in terms of n and m, release dates, 
processing times, weights and due dates of the jobs and compare the results for short and 
longer runs. Moreover, a comparison with a genetic algorithm is performed to test the 
influence of the use of a population. Section 5 contains some conclusions and summarizing 
recommendations. 

2. Basic notions 
Next, we describe the mathematical model for representing feasible solutions for the open 
shop problem. In the following, we use the digraph G(MO, JO) with operations as vertices 
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and arcs between two immediately succeeding operations of a job or on a machine. If we 
place the operations in a rectangular array, where the operations of job Ji are sequenced in 
row i and the operations on machine Mj in column j and draw an arc between immediately 
succeeding operations of the same job or on the same machine, we get the graph G(MO, JO) 
= G(MO) ∪ G(JO), where G(MO) contains only horizontal arcs (describing the machine order 
of the jobs) and G(JO) contains only vertical arcs (describing the job orders on the machines). 
Example 1: Let the machine orders of the jobs be chosen as 

 
and, moreover, let the job orders on the machines be as follows: 

 
Figure 1 shows the graphs G(MO), G(JO) and G(MO, JO) (with the pair ij of job and machine 
indices of the operations given inside the vertices). 
 

 
 

Figure 1. G(MO), G(JO) and G(MO, JO) 

A combination of machine orders and job orders (MO, JO) is feasible, if G(MO, JO) is acyclic. 
We call such an acyclic digraph G(MO, JO) a sequence graph. Note that all above graphs 
represent partial orders on the set of operations. Similarly as in (Bräsel (2006), Bräsel et al. 
(1993), Werner & Winkler (1995)), we describe a sequence graph G(MO, JO) by its rank 
matrix A = (aij), i.e., the entry aij = k means that a path to operation (i, j) with a maximal 
number of operations includes k operations. Due to this property, equality aij = k implies that 
there is no other operation with rank k in row i and column j, and the so-called sequence 
property is satisfied: ‘For each aij = k > 1, the integer k − 1 occurs as entry in row i or column j 
(or both).’ Now we assign the processing time tij as the weight to operation (i, j) in G(MO, 
JO). The computation of a longest path to the vertex (i, j) with (i, j) included in an acyclic 
digraph G(MO, JO), i.e. a path for which the sum of the vertex weights is maximal, gives the 
completion time cij of operation (i, j) in the semiactive schedule C = (cij). We remind that a 
schedule is called semiactive if no operation can start earlier without changing the 
underlying sequence graph. 
Example 2: Consider an open shop problem with n = 3 jobs and m = 3 machines. Let the release dates 
of the jobs be given as follows: r1 = 3, r2 = 1, r3 = 6. The job weights are w1 = 1,w2 = 4,w3 = 2. 
Moreover, the due dates of the jobs are given as follows: d1 = 10, d2 = 13, d3 = 18. The matrix T of the 
processing times of the operations is given as 
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(note that job J1 has to be processed only on machines M1 and M3). Assume that the job and machine 
orders are chosen as in Example 1. The resulting graph G(MO, JO) corresponds to the rank matrix 

 
For this instance, we obtain the following schedule C from the given matrix of processing times T = 
(tij) and the rank matrix A = (aij): 

 
Thus, we obtain the completion times C1 = 12,C2 = 16 and C3 = 17. For the optimization criterion  
F = ΣwiTi, we get the objective function value 

 
It can be noted that the advantage of the use of the rank matrix in contrast to the usual 
description of a solution by a permutation (i.e. sequence) of the operations is the exclusion 
of redundancy: different rank matrices describe different solutions while different operation 
sequences may describe the same solution. For example, both the permutations 

 
and 

 
represent the same sequence graph given as G(MO, JO) in Fig. 1. Considering e.g. the 
operations to be processed on machine M3, we have in both permutations OP1 and OP2 the 
same sequence 

( (1, 3), (3, 3), (2, 3) ), 
i.e. both permutations represent the same chosen job order on M3 : J1 → J3 → J2. This is also 
true for the remaining job orders and all machine orders of the jobs. Moreover, there exist at 
least 3! · 2! · 2! · 1! = 24 permutations of the operations which represent the same job and 
machine orders as the rank matrix A since there are three operations with rank 1, two 
operations with rank 2, two operations with rank 3 and one operation with rank 4 in A. In 
general, the problem of counting possible extensions of a partial order (as it is given e.g. by a 
rank matrix of a sequence graph) is #P-complete (see Brightwell & Winkler (1991)). 
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3. Simulated annealing algorithms 
In this chapter, we focus on the application of simulated annealing algorithms for solving 
open shop problems with different sum criteria. One of the major goals of this study consists 
in finding similarities and differences in the recommendations for the parameters of the 
algorithms for the different types of problems. 
It is well-known that simulated annealing is an enhanced version of local search. Annealing 
refers to the process when physical substances are raised to a high energy level and then 
gradually cooled until some solid state is reached. The goal of this process is to reach the 
lowest energy state. In this process physical substances usually move from higher energy 
states to lower ones if the cooling process is sufficiently slow. However, there is some 
probability at each stage of the cooling process that a transition to a higher energy state will 
occur, but this probability of moving to a higher energy state decreases in this process. 
In terms of our open shop model, a basic simulated annealing algorithm starts with 
generating an initial solution (rank matrix) A. Then a neighbor (rank matrix) A* of rank 
matrix A is generated and the difference Δ= F(A*)−F(A) in the objective function values of 
both schedules is calculated. If Δ < 0, the neighbor A* is accepted as the new starting 
solution in the next iteration since it has a better function value. If the objective function 
value does not decrease (i.e. Δ ≥ 0), the generated neighbor may also be accepted with a 
probability exp(−Δ / T), where T is a control parameter called temperature. This temperature 
is periodically reduced by a cooling scheme every EL iterations, where EL is a preset 
parameter called the epoch length. As a stopping criterion, one may use e.g. a given number 
of iterations, a time limit or a given number of iterations without an improvement of the 
best objective function value. In the first two cases, one must adjust the cooling scheme in 
such a way that the algorithm stops with a sufficiently small temperature. In our tests, we 
investigate in particular the influence of the chosen neighborhood and the cooling scheme. 

3.1 Neighborhoods 
First, we briefly discuss the generation of neighbors of a current solution described by the 
rank matrix A of a sequence graph G(MO, JO). In the case of a job shop problem, often a 
neighbor is generated by interchanging two adjacent jobs in exactly one machine order (this 
means that the ranks in the current rank matrix are changed in such a way that in exactly 
one machine order two adjacent jobs have been interchanged). We denote this 
neighborhood as machine oriented API neighborhood, abbreviated as API(MO). In an open 
shop problem we can, due to symmetry, also consider a neighborhood based on adjacent 
pairwise interchanges in the job order on a machine, abbreviated as API(JO). In our 
algorithms, we use the union of both neighborhoods, abbreviated as API. This means that, 
in order to generate a neighbor, the rank matrix is modified such that exactly in one job or 
machine order, two adjacent operations are interchanged. Thus, in order to generate a 
neighbor, an operation (i, j) is randomly selected and then it is interchanged with the 
predecessor or successor operation on machine Mj or of job Ji. One of these (at most) four 
possibilities is randomly chosen. If the pairwise interchange leads to a feasible schedule, it is 
accepted as the generated neighbor, otherwise another second operation is chosen to 
perform an adjacent pairwise interchange in a job or machine order. Note that the adjacent 
pairwise interchange always leads to a feasible solution if the ranks of the two chosen 
operations differ only by one. As a consequence, if the first operation has been chosen, one 
of the at most four possibilities for generating a neighbor in the API neighborhood always 
leads to a feasible solution which follows from the sequence property stated in Section 2. 
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Moreover, we consider the neighborhood k-API, in which a neighbor is generated from the 
current sequence graph G(MO, JO), respectively the corresponding rank matrix A, by 
generating consecutively up to k neighbors in the API neighborhood (i.e. a path containing 
up to k arcs in the resulting neighborhood graph is generated). When generating a neighbor, 
the number s∈{1, 2, . . . , k} of interchanges of two adjacent operations of a job or on a 
machine is randomly chosen. Note also that the neighborhood used in Liaw (1999) is a 
subneighborhood of the 3-API neighborhood, where one or up to four neighbors with 
specific properties have been generated per iteration. 
As a generalization of the shift neighborhood for permutation problems we use a 
neighborhood SHIFT, where exactly one operation is changed in the relative order of 
operations, namely in such a way that either in the job order on one machine or in the 
machine order of one job exactly one operation is shifted left or right. In order to generate a 
neighbor, an operation (i, j) is randomly chosen. Then another operation belonging to the 
same job or to be processed on the same machine is selected. Consider the first case (the 
second one is analogue), and let (i, k) be the other chosen operation. If the rank aik is smaller 
than aij , the rank aij is modified such that operation (i, j) appears immediately before 
operation (i, k) (it corresponds to a left shift of machine Mj in the machine order of job Ji). If 
the rank aik is larger than aij , the rank aij is modified such that operation (i, j) appears 
immediately after operation (i, k) (it corresponds to a right shift of machine Mj in the 
machine order of job Ji). Notice that usually the ranks of some other operations have to be 
modified in order to maintain all established precedence relations. If the chosen shift leads 
to an infeasible solution, this shift is not performed, and two other operations for 
performing a shift are randomly chosen. 
Another neighborhood considered is a restricted SHIFT neighborhood denoted as crit-
SHIFT. Here only such neighbors in the SHIFT neighborhood are considered which satisfy a 
necessary condition for an improvement of the makespan value, namely a critical path (i.e. a 
longest path among all paths ending in a sink of the corresponding sequence graph) in the 
starting solution is ‘destroyed’, and there does not exist a path in the graph describing the 
generated neighbor which contains the same vertices as this critical path of the current 
starting solution. This neighborhood is based on the so-called block approach originally 
introduced for shop scheduling problems with makespan minimization. Clearly, the crit-
SHIFT neighborhood is a subneighborhood of the complete SHIFT neighborhood. 
In our experiments, we always randomly generate one neighbor in the chosen neighborhood 
in each iteration. In particular, we do not consider such variants which investigate in one 
iteration all or several neighbors of the current starting solution in a particular 
neighborhood and select the best neighbor as the generated one to which the acceptance 
criterion of simulated annealing is applied. 
Example 3: We illustrate the API, SHIFT and crit-SHIFT neighborhoods discussed above by the 
following example with n = 3 and m = 4. Let the current sequence graph be described by the rank 
matrix 

 
Assume that operation (3, 3) with a33 = 5 (given in bold face above) has been chosen randomly for 
generating a neighbor in the API neighborhood. This operation (3, 3) is contained 
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a) in the machine order of job J3 : M4 →M2 → M1 → M3 and 
b) in the job order on machine M3 : J3 → J2 → J1. 
Using this operation (3, 3), one can generate two neighbors in the API neighborhood (note that we 
cannot generate four neighbors since machine M3 is the last one in the machine order of J3 and J3 is the 
first job in the job order on machine M3). If we interchange the machines M1 and M3 in the machine 
order of job J3 (see a) above), we get the rank matrix 

 
as the generated neighbor in the API neighborhood. If we interchange the jobs J3 and J2 in the job order 
on machine M3 (see b) above), we get the rank matrix 

 
as the generated neighbor. 
Next, we consider the generation of a neighbor in the SHIFT neighborhood. Let again (3, 3) be the 
operation chosen first and assume that operation (3, 2) is selected as the second operation. Operation 
(3, 2) is performed earlier and belongs to job J3 too. This means that operation (3, 3) will be shifted left 
in the machine order of job J3 so that it is rescheduled directly before operation (3, 2). This gives the 
rank matrix 

 
of the generated neighbor (notice that the entries of some operations have to be changed in order to 
maintain all precedence relations). Assume now that operation (1, 3) is chosen as the second 
operation. This operation is performed later than (3, 3) on the same machine which means that 
operation (3, 3) is shifted right in the job order on machine M3 so that it is rescheduled directly after 
operation (1, 3). This gives the rank matrix 

 
of the generated neighbor. So both rank matrices A3 and A4 describe feasible neighbors of rank matrix 
A in the SHIFT neighborhood. 
Now assume that the processing times of all operations are equal to one. In this case, the makespan 
value of rank matrix A is equal to 7, and a critical path contains e.g. the vertices 

 
(note that the critical path is not uniquely determined for this instance). In this case, both rank 
matrices A3 and A4 are also a neighbor of rank matrix A in the crit-SHIFT neighborhood (because in 
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both cases operation (3, 3) is shifted to a position ‘outside’ the chosen critical path). In fact, both 
neighbors lead indeed to an improvement of the makespan value: Cmax(A3) = 5 and Cmax(A4) = 6. 
Considering e.g. the objective function F = iC∑ and assuming that all release dates are equal to 
zero, the starting solution described by A has the function value F = 7 + 6 + 5 = 18, and both 
generated neighbors lead to an improvement of the objective function value: F(A3) = 5+4+5 = 14 and 
F(A4) = 5 + 4 + 6 = 15. 

3.2 Cooling schemes 
Typical cooling schemes used in a simulated annealing algorithm are a geometric, a Lundy-
Mees and a linear reduction scheme. The three cooling schemes have been tested for open 
shop problems with mean flow time minimization in Andresen et al. (2008). It has been 
found that often the geometric scheme is slightly superior. In most other applications to 
scheduling problems, a geometric cooling scheme is also preferred. Therefore, in the 
following we test exclusively geometric schemes. 
The geometric cooling scheme reduces the current temperature Told to the new temperature 
Tnew  in the next epoch according to 

 
where 0 < α < 1. 
In our experiments we fix the initial temperature T0, the epoch length EL and set the 
temperature reduction factor α  in such a way that the final temperature is close to zero (we 
always use Tend = 0.01 as the final temperature) taking into account that in our study, the 
maximal number of generated solutions is settled in advance and therefore, the maximal 
number of epochs with a constant temperature is fixed. Based on the experiments in 
Andresen et al. (2008), we fix the epoch length as EL = 100. 
In addition to the usual procedure of one cooling cycle, we also consider variants of 
simulated annealing with several cooling cycles in one run, where the temperature 
reduction is done faster within one run such that, if the final temperature is reached, the 
procedure is restarted again with the initial temperature. This requires that the (maximal) 
number of solutions to be generated in one run is settled in advance. The number CC 
denotes the number of cooling cycles in one run of the algorithm. 

4. Computational results 
In this section, we present the computational results with the tested algorithms. First, we 
describe the generation of the open shop instances in Section 4.1. Then we give some 
comments on the generation of the initial solution in Section 4.2. In Section 4.3, we describe 
the design of the comparative study. A detailed comparison of the simulated annealing 
algorithms is made in Section 4.4. Finally, we compare the fast simulated annealing 
algorithms with genetic algorithms from Andresen et al. (2008) in Section 4.5. 

4.1 Generation of instances 
For the comparative study, we consider all pairs (n,m), with n ∈ {10, 15, 20, 30} and m ∈ {10, 
15, 20, 30} yielding a total of 16 combinations of m and n. In particular, there are four pairs 
(n,m) with n = m, six pairs with n > m and six pairs with n < m. 
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For each pair (n,m), we generated several problem types differing in the job weights, the 
processing times, the release dates and the due dates. 
For the job weights, we considered the following two variants: 
w1: All weights are equal to one: wi = 1 for i = 1, 2, . . . , n. 
w2: The weights are uniformly distributed integers from the interval [1, 10]. 
For the processing times of the operations, we also consider two variants: 
t1: The processing times are uniformly distributed integers from the interval [1, 100]. 
t2: The processing times are uniformly distributed integers from the interval [35, 66]. 
For the above two cases, we have chosen two uniform distributions having the same 
expectation value of 50.5, but in the second case the standard deviation is substantially 
smaller, namely a bit less than one third of the standard deviation in the first case. 
For the release dates, we consider two different variants: 
r1: All release dates are equal to zero: ri = 0 for i = 1, 2, . . . , n. 
r2: The release dates are uniformly distributed integers from the interval [0, rmax], where 

 
In case r2, the value of rmax has been settled in such a way that it is equal to the half of the 
average total processing time of a job. 
For the due dates of the jobs, we considered the following three variants: 
d1: The due dates of all jobs are equal to zero: di = 0 for i = 1, 2, . . . , n (in this case, we have  
       the objective function iiC∑w  or its special case iC∑ ). 
d2: The due dates of the jobs are generated as follows: 

 
with the tightness factor TF = 1.0 for problems with n ≤ m and TF = 1.25 for the 
problems with n > m. 

d3: The due dates of the jobs are generated as follows: 

 
with the tightness factor TF = 1.1 for the problems with n ≤ m and TF = 1.5 for the 
problems with n > m. 

While for the second variant d2 due dates are more tight, they are more lose for the third 
variant d3. We have found that problems with n ≤ m and TF ≥ 1.2 tend to become rather easy 
in the sense that often the best of the constructive procedures has an objective function value 
of zero which means that the optimal solution has already been found. On the other hand, 
larger tightness factors are of interest for the problems with n > m. So we decided to use 
different tightness factors for the problem types with n ≤ m and n > m under consideration. 
Each problem type is described by a 4-tuple (w,t,r,d), For instance, the 4-tuple (w1,t1,r1,d1) 
characterizes the open shop problem iO C∑ of minimizing mean flow time when all 
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release dates are equal to zero and processing times are taken from the interval [1, 100] (this 
was the only problem type investigated in Andresen et al. (2008)). In our tests, we 
considered problems of all possible 4-tuples. This gives altogether 23 · 3 = 24 different types 
of problems. For each of these types and any of the 16 pairs (n,m), we generated 20 instances, 
giving a total of 24 · 16 · 20 = 7, 680 instances. 

4.2 Generation of the initial solution 
Often initial solutions for shop scheduling problems are obtained by generating active or 
nondelay schedules. A schedule is called active if no operation can be started earlier without 
changing the underlying sequence graph and delaying some other operation. A schedule is 
called nondelay if no machine is left idle provided that it is possible to process some job. 
Obviously, any nondelay schedule is an active schedule, and any active schedule is a 
semiactive one. Similarly as in Bräsel et al. (2008) for mean flow time minimization, we have 
found in initial tests that nondelay schedules are superior to active schedules for the 
problems under consideration. Therefore, we exclusively used the generation of nondelay 
schedules as fast constructive procedures. 
The algorithms for constructing a nondelay schedule repeatedly append operations to a 
partial schedule. Starting with an empty schedule (which is obviously a nondelay one), 
operations are appended as follows: we determine the minimal head r of all unscheduled 
operations. At time r, there exist both a free machine and an available job. To maintain the 
nondelay property of the schedule, we have to append an operation which can start at time 
r. Among all operations (i, j) with rij = r, choose one according to some priority dispatching 
rule. 
In our tests, we have used the following priority dispatching rules for generating a nondelay 
schedule: 
• RND (an operation is randomly selected) 
• FCFS (first come first served, i.e. the operation that entered the queue first is chosen), 
• SPT (shortest processing time), 
• WSPT (weighted shortest processing time, i.e. the operation with smallest quotient tij/wi 

is chosen) and 
• LPT (longest processing time), 
• EDD (earliest due date) 

4.3 Design of the comparative study 
For each of the instances generated as described in Section 4.1, we first tested the different 
simulated annealing variants. In particular, we have used the following simulated annealing 
algorithms, differing in the construction of the initial solution, the stopping criterion, the 
neighborhood and the cooling scheme. 
Initial Solution: We consider one variant with a weak initial solution and one variant with a 
better initial solution: 
 I1: The initial solution is determined by the generation of a nondelay schedule according to 

the rule RND. 
 I2: The initial solution is determined as the best nondelay schedule obtained by the 

application of all priority dispatching rules mentioned in Section 4.2. 
Stopping criterion: We consider two variants with an a priori fixed number of iterations (i.e. 
the number of generated solutions) and additionally one variant, where the algorithm stops 



Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 

 

61 

if no improvement of the best function value has been obtained for a certain number of 
iterations. In particular, we use the following stopping criteria: 
S1: The algorithm performs 30,000 iterations. 
S2: The algorithm performs 200,000 iterations. 
S3: The algorithm performs at most 200,000 iteration but stops, if no improvement of the 

best objective function value has been obtained for 10,000 iterations. 
Neighborhoods: The simulated annealing algorithm uses one of the four neighborhoods 
discussed in Section 3: 
N1: The algorithm uses the API neighborhood. 
N2: The algorithm uses the 3-API neighborhood. 
N3: The algorithm uses the SHIFT neighborhood. 
N4: The algorithm uses the crit-SHIFT neighborhood. 
Cooling Scheme: The geometric cooling scheme tested in our algorithms is characterized by 
the initial temperature and the number of cooling cycles. For the initial temperature, we 
used the following two variants: 
IT1: The initial temperature is equal to 2. 
IT2: The initial temperature is equal to 15. 
For the number of cooling cycles, we considered the following two variants: 
CC1: The number of cooling cycles is equal to 1. 
CC2: The number of cooling cycles is equal to 5. 
In our tests, we considered any possible combination of an initial temperature and the 
number of cooling cycles, yielding four different cooling schemes. 
Since we fixed the epoch length as EL = 100, this means that for variant CC1, the number of 
epochs is equal to 300 for stopping criterion S1. Moreover, since we fixed the final 
temperature as Tend = 0.01, the reduction factor α in the geometric scheme is equal to  
α = 0.983 for an initial temperature of 2 corresponding to IT1 and α = 0.976 for an initial 
temperature of 15 corresponding to IT2. For variant CC2, the number of epochs per cooling 
cycle is equal to 60. As a consequence, in each run the reduction factor α is equal to α = 0.916 
for an initial temperature of 2 and α = 0.887 for an initial temperature of 15. 
For the long runs with stopping criterion S2, the number of epochs is 2,000 (for S3, the 
maximal number of epochs is 2,000). Therefore, for variant CC1, the reduction factor α is 
equal to α = 0.998 for an initial temperature of 2 and α = 0.997 for an initial temperature of 
15. For variant CC2, the number of epochs per cooling cycle is equal to 400. As a 
consequence, the reduction factor α is equal to α = 0.987 for an initial temperature of 2 and  
α = 0.982 for an initial temperature of 15. 
A particular simulated annealing variant is described by a 5-tuple. For instance, algorithm 
(I2,S2,N3,IT1,CC2) means that the best constructive solution is taken as initial solution, 
200,000 iterations are performed, the SHIFT neighborhood is used and the cooling scheme is 
characterized by an initial temperature of 2 and five cooling cycles. We have run simulated 
annealing for any possible combination of a stopping criterion, use of a particular initial 
solution, a neighborhood and a cooling scheme. This yields 3 · 2 · 4 · 4 = 96 different 
simulated annealing algorithms. 
Concerning computational times we only mention that for the large problems with n = m = 
30, the average computational time per instance for a variant with stopping criterion S2 is 
198.3 s on an AMD Athlon XP 3200+. For smaller problems with n = 10 and m = 20, this 
average computational time for a long run per instance is 19.8 s while for the corresponding 
problems with n = 20 and m = 10, this average time is 22.2 s. We also note that one computer 
of this type would require about 4,250 hours to perform all runs done in our study. 
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4.4 Comparative study of simulated annealing 
Before comparing the simulated annealing variants, we give a few comments on the 
performance of the constructive algorithms. For n < m, we have found that the LPT rule is 
clearly the best algorithm. It is followed by the rules RND, SPT and WSPT which yield 
solutions of approximately the same quality. In particular, the rather good quality of the 
RND rule is surprising. This rule is clearly better than the ECT and FCFS rules which are the 
weakest constructive algorithms for problems with n < m. Problems with d3 tend to become 
easy. In this case, the majority of the dispatching rules yield the best constructive solutions, 
and many objective function values are equal or very close to zero. For the problems with n 
> m, the LPT rule works bad. The best results have been obtained with the EDD, WSPT and 
FCFS rules. If n = 30 and m = 10, the WSPT rule works good for problems with w2. 
However, for problems with w1, the FCFS rule is clearly the best for problems with d1 and 
the EDD rule is superior for the problems with d2 and d3. The observed trends are most 
obvious for a large ratio of n/m (although, if the ratio n/m decreases, the observations are 
similar but not so strong). For problems with n = m, all dispatching rules contribute best 
values. In general, there is an overlapping of the observations for the problems with n < m 
and n > m. We observed that the EDD rule is good for problems with r1 and d3 while the 
LPT rule works well for problems with r2. 
For evaluating the 96 simulated annealing variants, we use a performance index defined as 
follows. Let FA be the heuristic function value obtained for a particular instance by algorithm 
A, FCON be the best function value obtained by some of the constructive procedures 
mentioned in Section 4.2, and FBEST be the best function value obtained by one or several of 
the 96 tested simulated annealing variants. In the case of FCON > 0, the performance index PI 
of algorithm A for this particular instance is given by 

 
If FCON = 0, we define the performance indices of all simulated annealing algorithms with the 
corresponding constructive initial solution to be equal to 100. Moreover, let PI(k) be the 
percentage of the instances, for which a particular algorithm has obtained a performance 
index of at least k. That is, PI(95) = 80 means that the algorithm under consideration has 
obtained a performance index greater than or equal to 95 for 80 % of the instances. In the 
following evaluations, we consider the performance indices PI(95) (which stands for an 
excellent performance) and PI(75) (which stands for a good performance of the particular 
algorithm). 
First, we give some general observations from our study. Then we discuss separately the 
results for the problems with n < m, n = m and n > m in more detail. 
General Observations: 
As a general observation we have found that the ratio of n and m influences the hardness of 
the problems. Among the problem data, the range of the processing times and the job 
weights have in particular an influence on the selection of an appropriate algorithm or the 
quality of the results, while release dates and due dates have only minor influence. 
Therefore, the recommendations in the following sections do not strongly depend on 
different due dates and release dates. Hence, at most four algorithms (for any combination 
of weights and processing times) are suggested for every stopping criterion S1, S2 and S3, 
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respectively. On the other side, the range of due dates influences the range of the objective 
function values and their possible percentage improvements. 
The use of the best constructive algorithm leads to better results with the simulated 
annealing algorithms than the use of only a randomly generated initial solution. The choice 
of an appropriate neighborhood turns out to be substantial for the quality of the results. An 
appropriate initial temperature is at least for certain problem types important. In particular, 
some problems with unit weights require a low initial temperature when using short runs 
while for most problems with w2, the results with the different initial temperatures do not 
differ very much. From an overall point of view, the number of cooling cycles per run has 
only a small influence on the quality of the results. In general, algorithms with variant CC2 
turn out to be a bit superior to those with CC1. 
If one looks for an overall variant that performs well, we can recommend the algorithms 
with a good initial solution, the use of the SHIFT neighborhood and a cooling scheme with a 
low initial temperature and one or five cooling cycles. 
Problems with n < m: 
In Table 1, we summarize some results for the problems with n < m. The rows refer to the 24 
different problem types described by a 4-tuple (w,t,r,d). In column 2, we present the average 
objective function value FCON (rounded to integers) of the best constructive algorithm taken 
over all instances of the six pairs (n,m) with n < m. In column 3, the average percentage 
improvement PERC of the best function value obtained by the 96 simulated annealing 
variants over the function value of the initial solution is given. In the remaining columns, we 
present first the average performance index (columns AVG) of the corresponding algorithm 
and then the values PI(95) and PI(75) (columns 95/75) for the recommended variants with 
stopping criterion S1 (Alg 1), criterion S2 (Alg 2) and criterion S3 (Alg 3), respectively. In 
particular, based on the experiments and the discussion below, we have chosen the 
following algorithms: 
Alg 1: algorithm (I2,S1,N3,IT1,CC2) for problems with t1; algorithm (I2,S1,N1,IT2,CC2) for 

problems with t2; 
Alg 2: algorithm (I2,S2,N3,IT1,CC1) for problems with w1; algorithm (I2,S2,N3,IT2,CC2) for 

problems with w2; 
Alg 3: algorithm (I2,S3,N3,IT1,CC2) for problems with t1; algorithm (I2,S3,N1,IT1,CC1) for 

problems with w1 and t2; algorithm (I2,S3,N1,IT2,CC2) for problems with w2 and t2. 
From Table 1 we see that there is a large range of percentage improvements over the 
constructive algorithm for the particular types of problems. For problems with d1 (i.e. 
minimization of mean flow time or its weighted version), the average percentage 
improvements are very small (always less than 1 %). This corresponds to the observation for 
problem type (w1,t1,r1,d1) in Andresen et al. (2008), where it has been found that the 
solutions obtained by constructive algorithms are already almost optimal and often even a 
lower bound for the corresponding preemptive problem has been reached. On the other 
hand, problems with d3 tend to be easy in the sense that the initial solution has already a 
function value close to zero. Note that for these problems, the performance indices of Alg 1 - 
Alg 3 are strongly influenced by the large number of instances with FCON = 0, where the 
performance index is 100 per definition. For problems with d2, substantial average 
percentage improvements over the initial solution have been obtained. For these problems, 
it is remarkable that rather small objective function values have been obtained by the best 
simulated annealing algorithms although the tightness factor TF = 1 leads to tight due dates. 
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As a consequence, there are only short waiting times of the jobs in the best solutions found. 
Among all particular combinations of a problem type (w,t,r,d) and a pair (n,m), we observe 
that the absolute improvements of the average function values obtained by the best 
simulated annealing variant over the average values of the initial solutions are up to 130 
units for problems with w1 and up to 800 units for problems with w2. For problems with w1 
and d1, they are typically around 50 units. However, from Andresen et al. (2008) it follows 
that often the heuristic solution is equal or close to a lower bound for the optimal value of a 
problem of type (w1,t1,r1,d1). 
 

 
Table 1. Results for problems with n < m 

Moreover, the use of the SHIFT neighborhood is clearly superior for the problems with t1. In 
contrast, for most problem types with t2, both the API and 3-API neighborhoods are 
superior to the SHIFT neighborhood when using shorter runs with stopping criteria S1 and 
S3, and this tendency increases with the problem size. In addition, the API neighborhood is 
slightly superior to the 3-API neighborhood. We observed that the superiority of the SHIFT 
neighborhood in comparison with the two API-based neighborhoods is larger for problems 
with t1 than the superiority of the API-based neighborhoods over the SHIFT neighborhood 
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for those with t2 for short runs. However, the SHIFT neighborhood becomes the single best 
for the long runs with stopping criterion S2. The variants with stopping criterion S2 yield 
the best results, often followed by the algorithms with S1 and finally those with S3 (an 
explanation is given in the next paragraph). Variants with an initial temperature IT1 tend to 
be superior to those with the initial temperature IT2, in particular for problems with w1, t1, 
for which they are substantially better (for an arbitrary stopping criterion). Moreover, for 
most problems algorithms with five cooling cycles work slightly better than variants using 
only one cooling cycle. However, for the long runs with stopping criterion S2, the use of one 
cooling cycle is slightly better for the problems with w1. 
Next, we discuss the number of iterations executed in the case of stopping criterion S3. First, 
taking the average number of generated solutions over all problems with n < m, this number 
is up to 25 % for algorithms with N3 and only up to 12 % for algorithms with N1, N2 and 
N4. In particular, for neighborhood N4 the algorithm stops very quickly. For problems with 
w1, even for neighborhood N3 the algorithm stops after 5 % when using the larger initial 
temperature IT2 and CC1. This means that for an initial temperature of 15, usually no 
improvements over the function value of the initial solution are obtained. The percentage of 
generated solutions is also larger for problems with t1 in comparison with the problems 
with t2. The largest percentage of generated solutions was obtained for problem type 
(w2,t1,r1,d1) as well as n = 20 and m = 30 using N3, IT1, CC2 and a random initial solution, 
where 48 % of the iterations were executed. Comparing stopping criteria S1 and S3, we 
observe that only for the SHIFT neighborhood usually more than 30,000 solutions were 
generated for S3 while for the other neighborhoods, typically only around 20,000 solutions 
have been generated. 
Problems with n = m: 
Some results for the problems with n = m are given in Table 2. The meaning of the rows and 
columns is the same as in Table 1. Based on the experiments and the discussion below, the 
following algorithms for the stopping criteria S1, S2 and S3, respectively, are included in 
Table 2: 
Alg 1: algorithm (I2,S1,N1,IT2,CC2) for problems with w1 and t2; algorithm (I2,S1,N3,IT1, 

CC2) for all other problems; 
Alg 2: algorithm (I2,S2,N3,IT1,CC1) for problems with w1, algorithm (I2,S2,N3,IT1,CC2) for 

problems with w2 and t1; algorithm (I2,S2,N3,IT2,CC2) for problems with w2 and t2. 
Alg 3: algorithm (I2,S3,N1,IT2,CC1) for problems with t2; algorithm (I2,S3,N3,IT1,CC2) for 

problems with w1 and t1; algorithm (I2,S3,N3,IT1,CC1) for problems with w2 and t1. 
For the problems with w1 and d1, the average percentage improvements are smaller than 1 
%. These percentage improvements are larger for problems with w2 and t2. Here they are 
up to 2.53 % for problem type (w2,t2,r1,d1) and n = m = 10. For problem type (w1,t2,r2,d3), 
average percentage improvements of more than 90 % have been obtained and the final 
average objective function values for the instances of the particular pairs (n,m) are between 0 
and 10 so that many problems have been solved to optimality. When comparing the average 
function values of the initial solutions with the average values by the best simulated 
annealing solutions, the absolute improvements are up to 200 units for problems with w1 
and up to 1,500 units for the problems with w2. 
Among the neighborhoods, the SHIFT neighborhood is clearly on the first place followed by 
the 3-API neighborhood (which is, however, substantially worse) when considering the 
results for all pairs (n,m). The crit-SHIFT neighborhood works extremely weak. The use of a 
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small initial temperature is slightly superior. In particular, for the long runs with 
neighborhood N3 and stopping criterion S2, often the large initial temperature combined 
with one cooling cycle works weak for problems with w1. In general, the use of five cooling 
cycles is slightly superior in most cases. As for the problems with n < m, for the long runs 
with stopping criterion S2, the use of one cooling cycle is better for the problems with w1 
while the use of five cooling cycles is better for w2. 
 

 
Table 2. Results for problems with n = m 

When looking at the instances of the particular pairs (n,m), we can note that there is a 
tendency that with an increasing number of jobs, the API neighborhood becomes more and 
more competitive to the SHIFT neighborhood. For the problems with n = m = 20, the API 
neighborhood becomes superior for the problems with w1 when using short runs. For the 
problems with n = m = 30, the API neighborhood is also superior for most problem types 
when using short runs and even for problems with w1 when using long runs. This 
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corresponds to the observation in Andresen et al. (2008), where the API neighborhood 
became superior for the short runs with problem type (w1,t1,r1,d1) and n ≥ 20. 
Moreover, for most problems with w1 and t2, it turned out that in the case of short runs 
with stopping criterion S1, the recommended variant (I2,S1,N1,IT2,CC2) works not so good 
for small problems with n = 10 while the use of the API neighborhood is clearly superior for 
the larger problems with n ≥ 20. 
In addition, the variant (I2,S3,N1,IT2,CC1) was recommended for problems with w2 and t2 
from an overall point of view when using S3. However, for these problems the performance 
depends also on the existence of release dates. In general, the API neighborhood is better for 
the problems with r1 while the SHIFT neighborhood is better for the problems with r2 when 
using S3 (the latter differs from the recommendation for Alg 3 made from an overall point of 
view for the corresponding group of problem types). Nevertheless, in contrast to the above 
comment, for the small problems with n = m = 10 and r1, the SHIFT neighborhood is 
superior while for the large problems with n ≥ 20 and r2, the API neighborhood is clearly 
superior. This coincides with the general observation that the SHIFT neighborhood is often 
substantially better for small problems while the API neighborhood becomes better for the 
large problems. 
For stopping criterion S3, the number of performed iterations slightly increases with the 
problem size. For problems with n = m = 20, up to 44 % of the iterations have been 
performed when using the SHIFT neighborhood. The largest number of iterations were 
performed for problems with t1. However, these numbers are substantially smaller for the 
other neighborhoods. In particular, for the small problems with n = m = 10, the number of 
performed iterations is roughly only the half of those for the large problems but in general, 
these percentages for the large problems are still rather low. For a substantial number of 
problems with d3, an objective function value of zero has been obtained for the long runs 
with the SHIFT neighborhood. 
Problems with n > m: 
Some results for the problems with n > m are summarized in Table 3. The meaning of the 
rows and columns is the same as in Table 1. Based on the experiments and the discussion 
below, we have chosen the following algorithms for the stopping criteria S1, S2 and S3, 
respectively: 
Alg 1: algorithm (I2,S1,N3,IT2,CC2) for problems with w2 and t1, algorithm (I2,S1,N3,IT1, 

CC1) for all other problems; 
Alg 2: (I2,S2,N3,IT2,CC2) for problems with w2; algorithm (I2,S2,N3,IT1,CC2) for problems 

with w1 and t1, algorithm (I2,S2,N3,IT1,CC1) for problems with w1 and t2; 
Alg 3: algorithm (I2,S3,N3,IT1,CC1) for problems with w1 and t2 as well as w2 and t1; 

algorithm (I2,S3,N3,IT1,CC2) for all other problems. 
For the problems with d2 and d3, the average percentage improvements are much smaller 
than for the problems with n ≤ m. In particular, for the problems with n = 30 and m = 10, 
these percentages are less than 1.4 % for the problems with w1. For the corresponding 
problems with w2, these average percentages are between 3.2 and 4.8 %. In terms of the 
objective function values, the absolute improvements of the function values are larger than 
for the problems with n ≤ m. More precisely, the absolute improvement of the average 
function value obtained by the best simulated annealing variant over the average value of 
the initial solution among all particular combinations of a problem type (w,t,r,d) and a pair 
(n,m) is up to 230 units for problems with w1 and up to 2,800 units for problems with w2. In 
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particular, for problem type (w1,t2,r2,d3) and the instances with n = 30 and m = 20, the 
average function value of the initial solution is 233.5, but the average function value of the 
best simulated annealing solution is only 3.4. 
In general, it can be observed that the performance indices of the algorithms using the 
SHIFT neighborhood and stopping criterion S2 are consistently rather large. One can also 
note that long runs with the API-based and crit-SHIFT neighborhoods do not reach the 
quality of short runs with the SHIFT neighborhood. As an exception, the crit-SHIFT 
neighborhood works (surprisingly) good for the problems with n = 15 and m = 10 as well as 
n = 30 and m = 20 for the problems with d3 (sometimes even better than the SHIFT 
neighborhood). Variants with a low initial temperature ar mostly superior, and this 
superiority is stronger than for the problems with n ≤ m. This becomes particularly obvious 
for the problems with w1. For the short runs with stopping criteria S1 and S3, often the use 
of one cooling cycle can be recommended. 
 

 
Table 3: Results for problems with n > m 



Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 

 

69 

When looking at the instances of the particular pairs (n,m), we observe for the problems 
with n = 30 and m = 20, that the API neighborhood and also the 3-API neighborhood become 
superior to the SHIFT neighborhood for short runs. This tendency is stronger for the 
problems with w1. We note that this also corresponds to the observation in Andresen et al. 
(2008), where the API neighborhood became superior for problems of the type (w1,t1,r1,d1) 
with n > m ≥ 20. One can conjecture that such a trend becomes even stronger for larger 
problems not considered in this study (see also Andresen et al. (2008)). For the long runs 
with S2, the SHIFT neighborhood is still superior to the API neighborhood for almost all 
problem types with n = 30 and m = 20. This observation is particularly obvious for the 
problems with w2. An exception are problems of the types (w1,t2,r1,d3) and (w2,t2,r1,d3), 
where both the API and the 3-API neighborhoods are clearly superior to the SHIFT 
neighborhood. For stopping criterion S3, sometimes the SHIFT and in other cases the API 
neighborhood works better. On the other side, for problems with n = 30 and m = 15 and 
short runs with S1, the API neighborhood is only superior for some problem types with w1 
and t2. 
When using stopping criterion S3, the largest number of performed iterations can be 
observed for algorithms with the SHIFT neighborhood and a randomly generated initial 
solution when n = 30 (the largest numbers of iterations have been executed for problems 
with w2 and t1). In this case, up to more than 90 % of the maximal number of generations 
have been generated. On the other side, in the case of a good initial solution the percentage 
of performed iterations is mostly less than 30 %, and for the API-based neighborhoods both 
with a weak and a good initial solution, these percentages are always less than 30 %, often 
even substantially less. Nevertheless, on average, only for these problems with n > m, the 
performance indices of the recommended algorithms with S3 are better than those of the 
recommended algorithms with S1. 
From an overall point of view it turned out that problems with n > m are the hardest ones, in 
particular those with a large ratio n/m. 

4.5 Comparison with a genetic algorithm 
Genetic algorithms belong to the class of artificial intelligence techniques and they are based 
on Darwin’s theory about ‘survival of the fittest and natural selection’. This type of 
algorithms has been developed by Holland (1975), and one of the first genetic algorithms for 
scheduling problems has been given by Werner (1984). A genetic algorithm is characterized 
by a parallel search of the state space by keeping a set of possible solutions under 
consideration, called a population. A new generation is obtained from the current 
population by applying genetic operators such as mutation and crossover to produce new 
offspring. The application of a genetic algorithm requires an encoding scheme for a solution 
(also denoted as an individual), the choice of genetic operators, a selection mechanism and 
the determination of genetic parameters such as the population size and probabilities of 
applying the genetic operators. 
In our tests, we use the genetic algorithm tested in Andresen et al. (2008) on the mean flow 
time open shop scheduling problem. For a more detailed description of this algorithm, the 
reader is referred to Andresen et al. (2008). Here, we use the recommended parameters, in 
particular we use a mutation probability of 0.8 and a crossover probability of 0.2. The initial 
population includes the best constructive solution of the algorithms described in Section 4.2 
as one solution. We consider three variants of this genetic algorithm, denoted by 
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GA(popsize), differing only in the population size popsize. In particular, we apply the variants 
GA(10),GA(50) and GA(100). 
We mainly compare the genetic algorithm with the short runs of simulated annealing 
(stopping criterion S1). In Andresen et al. (2008), both the simulated annealing and the 
genetic algorithms generated 30,000 solutions. However, the genetic algorithms needed 
substantially larger computational times. In the following, for the genetic algorithms we 
allow a time limit of two times the required average running times for the simulated 
annealing algorithms with 30,000 generated solutions (estimated in advance). 
For evaluating the genetic algorithms, we also use the performance index PI introduced in 
Section 4.4. However, since we refer to the best value obtained by some simulated annealing 
variant, the performance index can be greater than 100 for a particular instance, if a genetic 
algorithm generates a better solution than the best one obtained among all simulated 
annealing variants. 
In Table 4, we present the average performance indices of the three genetic algorithms for 
the 24 problem types, where again all pairs (n,m) of the corresponding relation between n 
and m are considered. For n < m, it can be seen that in most cases a large population size of 
100 is superior. Algorithm GA(10) is better than the recommended variant Alg 1 (but we 
remind that the time limit for the genetic algorithms is roughly twice the time limit for Alg 
1). However, on average, the performance of the long simulated annealing algorithms is not 
reached. Moreover, the performance indices of the genetic algorithms depend on the 
problem size. Sometimes the genetic algorithm reaches clearly a better performance (even 
than the long runs of simulated annealing with stopping criterion S2). The largest 
performance indices have been obtained as 143 for problem type (w2,t2,r2,d1) and as 137 for 
problem type (w2,t2,r1,d2) for the problems with n = 10 and m = 15 both with algorithm 
GA(100). On the other side, the performance index of algorithm GA(100) for the problems 
with n = 20 and m = 30 and type (w1,t1,r1,d1) is only 14. 
For n = m, it can be observed that an average performance index of more than 100 has been 
obtained for 10 problem types both by algorithms GA(50) and GA(100). However, a large 
range of the performance indices can be observed. The smallest index of algorithm GA(100), 
namely 33, has been obtained for problem type (w1,t1,r1,d3) for the instances with n = m = 
30. Concerning the large performance indices for problem type (w2,t2,r2,d2), we note that 
these two values for the algorithms GA(50) and GA(100) are strongly influenced by one 
outlier instance, where simulated annealing works bad and the function value of the initial 
solution is only improved by two units with the best simulated annealing algorithm while 
the genetic algorithm with a large population size can improve the function value by some 
hundreds of units. (On the other side, there are also instances for this type, where simulated 
annealing is better then the best genetic algorithm by several hundreds of units.) In a weaker 
form, this also holds for problem type (w2,t2,r2,d1). Excluding these outlier instances, the 
results of the genetic algorithms improve with the population size and particularly 
algorithm GA(100) can be recommended for problems with n = m. However, from an overall 
point of view, all three genetic algorithms are superior to fast simulated annealing runs (see 
also Andresen et al. (2008) for mean flow time minimization). 
A different behavior can be obtained for the problems with n > m. For these problems, the 
quality of the solutions of the genetic algorithm decreases with increasing population size in 
terms of the performance index. Moreover, the performance indices of the genetic 
algorithms are smaller than those obtained for fast simulated annealing algorithms (and 
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they are substantially smaller than those for the best simulated annealing algorithms). For 
the best genetic algorithm GA(10), the largest performance index for the problems with d1 
and d2 is 84 for problem type (w2,t2,r1,d2) for the instances with n = 15 and m = 10 (note 
that some of the problems with d3 are easy so that larger indices have been obtained) while 
small performance indices have been obtained in particular for the problems with n = 30. 
 

 
Table 4. Results of the genetic algorithms 

More precisely, even for the best genetic algorithm GA(10), for the problems with n = 30 and 
m = 20 a smallest performance index of 15 is obtained for problem type (w1,t2,r2,d2), for the 
problems with n = 30 and m = 15 the smallest index is 21 for problem type (w1,t1,r1,d3) and 
for the problems with n = 30 and m = 10 the smallest index is 29 for problem type 
(w1,t2,r1,d3). In general, among all 72 combinations of a problem type and one of the pairs 
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(n,m) with n = 30, the indices of algorithm GA(10) are smaller than 40 for 48 of the 72 cases, 
among them 32 cases with w1. Moreover, the smallest performance index of algorithm 
GA(100) is even only 3 for the problems with n = 30 and m = 15 and type (w1,t1,r1,d2). The 
superiority of good simulated annealing variants becomes stronger for problems with an 
increasing number of jobs. 
The results of the comparison of simulated annealing and genetic algorithms correspond to 
those obtained in Andresen et al. (2008) for problem type (w1,t1,r1,d1), where genetic 
algorithms are competitive for problems with n ≤ m while simulated annealing was clearly 
better for instances with n > m and a large ratio of n/m. 

5. Concluding remarks 
Often in the literature, a particular type of a problem is considered (e.g. processing times are 
uniformly distributed in the interval [1, 100]) and then the parameters of a simulated 
annealing algorithm are tuned for this concrete situation. The use of such an algorithm is 
then recommended for arbitrary instances of the problem under consideration. However, in 
general it is not a priori clear that this particular tuning is also recommendable for other 
types of instances of the problem when, for instance, processing times have a substantially 
different range, due dates are set in another way, or job weights are very different, etc. One 
of the major goals of this study was to find out which parameters of open shop problems 
with the minimization of total weighted tardiness have a strong influence and which have a 
smaller influence on the selection of an appropriate simulated annealing algorithm. 
From our computational study for problems with up to 30 jobs and 30 machines, we can 
give the following conclusions and recommendations: 
• The concrete data of the problems have a substantial influence on the design of an 

appropriate simulated annealing algorithm. While for makespan minimization in an 
open shop only square problems with n = m have been considered in the literature 
(because they are the hardest problems), the ratio of n and m has an influence on the 
performance of particular simulated annealing and genetic algorithms for problems 
with sum criteria. As in Andresen et al. (2008), we have evaluated the results separately 
for the cases n < m, n = m and n > m. 

• For problems with n ≤ m including positive due dates, only instances with a tightness 
factor up to approximately 1.1 are of interest. Even for the problems with a tightness 
factor between 1.0 and 1.1, the final function values are rather small and therefore, the 
corresponding solutions are close to the optimal ones. For larger tightness factors, 
problems are very easy in the sense that already simple dispatching rules construct 
solutions with a function value equal or close to zero. For problems with n > m, 
instances with larger tightness factors are of interest. If n = 30 and m = 10 and due dates 
according to d3 are considered, the objective function values of the best solution are still 
around 10,000 for the problems with w1 and around 30,000 for the problems with w2. 

• In terms of the objective function value, the absolute improvements of the average 
function values of the final solution over the average values of the initial solutions are 
usually larger for the problems with n > m (where these improvements are even up to 
2,800 units) while for problems with n < m, these improvements are smaller (always less 
than 130 units for all problem types and pairs (n,m)). It appears that problems with n < 
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m are easier to solve while problems with n > m are the hardest ones. This coincides 
with the observations made in Andresen et al. (2008), where it has been found for the 
problems of type (w1,t1,r1,d1) that the objective function values of the heuristic 
solutions are close to a lower bound for problems with n < m. If we consider percentage 
improvements of the objective function values, they are higher for the problems with d2 
and d3 (where the function values of the initial solutions are considerably smaller). 

• In general, the choice of a good initial solution strongly influences the quality of the 
iterative solution finally obtained. One possibility is to generate nondelay schedules by 
priority dispatching rules. Among the six rules used in our study, the LPT rule can be 
recommended for problems with n < m, the WSPT, EDD and FCFS rules are good for 
particular types of problems with n > m, and for problems with n = m, all the six rules 
considered in our study contribute good initial solutions. This confirms and generalizes 
the results from Bräsel et al. (2008). Since these algorithms are very fast, the application 
of several rules and the selection of the best solution can be recommended to generate 
appropriate initial solutions. 

• The choice of an appropriate neighborhood has probably the largest influence on the 
quality of a simulated annealing algorithm. For most problem types considered in this 
study, the use of the SHIFT neighborhood is strongly recommended and superior to 
API-based neighborhoods. An exception are the following situations when using short 
runs with stopping criterion S1 or S3. For problems with n < m and t2, the results both 
with the API- and the 3-API neighborhoods are better than with the SHIFT 
neighborhood. In addition, for large problems with n ≥ m ≥ 20, the API neighborhood 
and also the 3-API neighborhood become superior for more and more problem types. 
On the other side, for long runs with stopping criterion S2, the API neighborhood 
becomes superior to the SHIFT neighborhood only for the large square problems with n 
= m = 30, in particular for the problems with w1 and also for most problems with w2 
and d3. Moreover, the algorithms using the crit-SHIFT neighborhood are not 
competitive for almost all problems. 

• The selection of an appropriate simulated annealing algorithm does not essentially 
depend on the concrete pair (n,m) within each of the three groups n < m, n = m and n > 
m with the exceptions discussed in the previous item. However, the observed trends for 
the problems with n < m are stronger if n/m is small, and the trends for the problems 
with n > m are stronger if n/m is large. On the other side, if n/m is close to one, the 
observations are more similar to the case n = m. This corresponds to the results in 
Andresen et al. (2008) for problems with minimizing mean flow time. 

• For some problems it is essential to start with an extremely small temperature. This is 
particularly true for problems with w1, especially for short runs. On the other side, the 
choice of an appropriate initial temperature is not so important for the problems with 
w2. In particular, for the long runs with stopping criterion S2, the use of a small initial 
temperature is advantageous for problems with w1 while for problems with w2, 
variants with a larger initial temperature become more competitive. Moreover, the use 
of a low initial temperature is superior for most problems with n > m as well as for the 
problems with w1, t1, arbitrary values of n and m and arbitrary stopping criterion. 
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• The number of cooling cycles does not have a substantial influence on the quality of the 
simulated annealing algorithms. Among the recommended algorithms, there are 
variants with one and five cooling cycles. From an overall point of view, the use of five 
cooling cycles leads to slightly better results, in particular for the problems with n ≤ m. 

• As one can expect, the long runs with stopping criterion S2 obtain the best results. 
However, when using long runs with the API and 3-API neighborhoods, for most 
problem types the results are nevertheless worse than in the case of short runs with the 
SHIFT neighborhood. This is partially opposite for problems with n < m and t2. 
Variants with the flexible stopping criterion S3 are not superior to short runs with 
stopping criterion S1 for the majority of problem types. An exception are most types of 
the hard problems with n > m, in particular problems with w2. 

• From an overall point of view, a variant using a good initial solution and the SHIFT 
neighborhood with a small initial temperature of two and one or five cooling cycles can 
be recommended among the simulated annealing algorithms for problems with up to 
30 jobs and 30 machines. However, as mentioned above, for the problems with n ≥ m ≥ 
20, the API neighborhood becomes better. It can be conjectured that this trend becomes 
even stronger for problems with n ≥ m as the number of machines increases further. 

• When comparing fast simulated annealing and the genetic algorithms used in our 
study, we have to distinguish the cases n ≤ m and n > m. While for problems with n ≤ m 
the genetic algorithm with a large population size often gets a better solution than short 
and sometimes even the best simulated annealing algorithm, this is not true for the 
problems with n > m. Here a good fast simulated annealing algorithm is usually 
superior to the best genetic algorithm (and the genetic algorithms perform extremely 
poor in comparison to the long simulated annealing algorithms). 

The algorithms presented in this paper are included into the program package LiSA - A 
Library of Scheduling Algorithms, version 3.0 (see http://lisa.math.uni-magdeburg.de). For 
a free use of the algorithms discussed in this paper and the whole package, the interested 
reader can contact the LiSA team under the above website. A table with the seeds for 
generating the open shop instances used in this paper can also be obtained. 
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1. Introduction  
In this chapter, the application of Simulated Annealing (SA) algorithm in real time 
multiagent coordination problem is described. A Multiagent System  (MAS) consists of a 
group of agents that interact with each other. Research in MAS aims to provide theories and 
techniques for agents’ behavior management. The focus of this chapter is on fully 
cooperative MAS, where all the agents share a common long-term goal. Examples include a 
team of robots who play football against another team or a group of rescue robots that, after 
an earthquake, must safely rescue the victims as soon as possible. The challenging issue in 
such systems is Coordination: the policy to insure that the individual action of each agent 
can generate the optimal joint action as a whole.  
Coordination in MAS has been explored from many aspects such as game theory (Osborne 
& Rubinstein , 1999), communications (Carrier & Gelernter, 1989), social conversions 
(Boutilier, 1996 ) and learning(Tan, 1997). Unfortunately these approaches have some flaws. 
First, in the worst case, these approaches degrade to a naïve solution which searches the 
whole joint action space whose size grows exponentially with the number of agents ( It is 
called “curse of dimensionality”). Therefore, they do not scale well for large systems. 
Second, many of the approaches report an answer only when all the possible statuses have 
been considered. This is not suitable for real time case. In many real time scenarios such as 
robot football, rescue robots, etc.，it is often needed that decision making algorithm returns 
a well enough answer at any time.  
Recently, there is some work on how to decrease the joint action space by coordination graph 
(CG) (Guestrin & Venkataraman , 2002). The insight in CG is that in MAS only a small part 
of agents need to coordinate their actions while others can still act individually. Thus, the 
global joint payoff function, the representation of the global joint coordination dependencies 
among all agents, is approximated as a sum of local payoff functions, each of which 
represents the local coordination dependencies between a small sub-group of the agents. 
Then, the agents use a variable elimination (VE) algorithm to determine their optimal joint 
action. Unfortunately, the worst time complexity of VE grows exponentially with the 
number of agents. Moreover, VE only reports results when the whole algorithm terminates, 
therefore it is unsuitable for real-time systems. Max-plus (MP) algorithm is proposed as an 
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approximate alternative to VE (Kok & Vlassis, 2005). MP can converge to the optimal 
solution for tree-structured graphs and also find near optimal solutions in graphs with 
cycles, but it limits the local payoff functions to contain at most 2 agents.  
In this chapter, An Simulate Annealing (SA) based algorithms to address aforementioned 
coordination problem is presented. This approach has two main benefits. First, the time 
taken by the algorithm grows polynomial with the number of agents. Second, the algorithm 
can report a near-optimal answer at any time. 
The chapter is organized as follows. Section 2 describes the problem setting and 
representative work on how to solve multiagent decision problem, especially on Variable 
Elimination (VE) approach. Section 3 introduces the general steps and key elements of SA 
algorithms, which is employed in later sections. Section 4 gives how to effectively find a 
satisfactory answer in any time for multiagent decision problem by SA algorithm. In Section 
5, the performance of SA algorithm on multiagent decision problem is evaluated by 
comparing it with comparable approaches followed by conclusion and future work. 

2. Problem setting and variable elimination approach 
Multiagent decision making problem can be formally describe as follows. 
Given a group of agents G={G1,G2,…,Gn}, they are interacting with each other together during a long 
time sequence {t1,t2,…,tn} to reach final goal . At each time ti, each agent Gi selects an individual 
action ai from his own action set Ai (Thus the joint policy space is A=×Ai ) based on payoff function 
v(a) and goes into next time ti+1. At each time, the decision making problem is to find the optimal 
joint action a* that maximize the global payoff function v(a). That is to say, a*=maxarga v(a). 
To overcome the curse of dimensionality, the global joint payoff function is decomposed 
into a linear combination of s set of local payoff functions, each of which is only related to a 
small number of agents. For example, in RoboCup, only the players that are close to each 
other have to coordinate their actions to perform a pass or a defend. In some situations, this 
approach can get a very compact representation for coordination dependencies among 
agents. Furthermore, such representation can be mapped onto a coordination graph G=(V,E) 
according to the following rules: each agent is mapped to a node in V, and each 
coordination dependency is mapped to an edge in E. Then Variable Elimination (VE) can be 
used on G to determine the optimal joint actions.  
Variable Elimination is also called bucket elimination. It is first used for reasoning in Bayes 
network. It can also be effectively used to solve the multiagent decision making problem. 
The technical steps include two passes. In the first pass, by enumerating all the possible 
combinatorial joint actions of his neighborhood, each agent conditionally computes his own 
optimal action and sends the result to the entire neighborhood. Then, the agent will be 
eliminated from the system. This process will continue until only one agent remains in the 
system. In the second pass, all agents do the entire process in reverse elimination order. In 
the process every agent can find his own optimal decision based on his neighborhood 
agent’s behavior. An example is taken to illustrate the execution of VE algorithm. Suppose 
that the system has 4 agents with each one having 4 different actions, then the number of 
joint actions is 44=256, and global joint payoff function can be decomposed as: 

 V(a)=v1(a1,a2)+v2(a2,a4)+v3(a1,a3)  (1) 

Fig.1 shows the initial corresponding coordination graph. The key idea in VE is that, rather 
than enumerating all possible joint actions and summing up all functions to do 
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maximization, each time only one variable is optimized. The example begins with 
optimization for agent 1. Agent 1 collects all local payoff functions including its own, i.e., v1 
and v3 then does maximization. Hence, it can be obtained that 

 maxa v(a)= 432 ,,max aaa {v2(a2,a4)+ 1max a [v1(a1,a2)+v3(a1,a3)]}  (2) 

After enumeration of possible action combinations of his neighbors, i.e., agent 2 and agent 3, 
agent 1 conditionally returns his best response and yield a new function e1(a2,a3) = 
maxa1[v1(a1,a2)+v3(a1,a3)]. Its value at the point a2, a3 is the value of the internal max 
expression in equation (2). At this time, agent 1 is eliminated from G. The global joint payoff 
function is rewritten as: 

  maxav(a)= 432 ,,max aaa {v2(a2,a4)+e1(a2,a3)} (3) 

Now fewer agents remain. Next, agent 2 does the same procedure. After collecting v2(a2,a4) 
 

 
Fig.1. Initial coordination graph 

and e1(a2,a3), agent 2 produces a conditional strategy based on the possible actions of agent 3 
and agent 4, and returns his choice, i.e., e2(a3,a4) = maxa2 {v2(a2,a4)+e1(a2,a3)} to the system, 
then is eliminated. The global payoff function only contains 2 agents now:   

 maxav(a)= 43,max aa {e2(a3,a4)}  (4) 

Agent 3 begins to do optimization. Enumerating actions of agent 4, he reports his own 
choice and gives a conditional payoff e3(a4)= 3max a e2(a3,a4). Finally, the only remaining 
agent 4 can simply choose his optimal action: a4*= 4arg max a e3(a4). 
In the second pass, all agents do the entire process in reverse elimination order. To fulfill 
agent 4's optimal action a4*, agent 3 must select a3*= 3arg max a e3(a4*). Then agent 2 can make 
a decision a2*= 2arg max a e2 (a3*,a4*). Finally, agent 1 does a1*= 1arg maxa e1 (a2*,a3*) to choose 
his optimal action appropriately. The whole procedure needs only 4×4+4×4+4=36 iterations 
which is much smaller than 256 iterations of the whole joint action space. 
The outcome of VE is independent of the elimination order and always gives the optimal 
joint action (Guestrin, 2003). However, the running speed of VE is depended on the 
elimination order and exponential in the induced width of the coordination graph (Guestrin 

G1

G2 G3

G4 
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& Venkataraman, 2002) (Dechter,1999). Finding the optimal elimination order for VE is a 
well known NP-complete problem (Arnborg et al., 1987). Thus, in some cases and especially 
in the worse case, the time consumed by VE grows exponentially with the number of agents. 
Furthermore, VE can not give any useful results until the termination of the complete 
algorithm. Therefore, it is not suitable for real time multiagent decision making scenario. So 
in the following graph how to use simulated annealing (SA) approach to circumvent such 
limitations is addressed in detail. 

3. Simulated annealing algorithms 
The simulated annealing algorithm (also called as monte carlo annealing or probabilistic 
hill-climber), inspired by statistical mechanics, is very popular for combinatorial 
optimization. In this area efficient methods are developed to find minimal or maximal 
values for a function of a number of independent variables. The simulated annealing 
process executes by ‘melting’ the system being optimized at a high effective temperature at 
first, and then lowering the temperature by slow stages until the system ‘freezes’ and no 
further change occurs. In the following subsection the generic procedure to solve 
combinatorial optimization is introduced first, and then the essential factors in designing SA 
algorithm are analyzed. 

3.1 Generic procedure to solve combinatorial optimization by SA 
Given a generic function to be optimized f: (x1,x2,…,xj,…xn)→R+, where xj∈S ( here S is the 
domain) is a component of vector X and N(xj)∈ S is the neighborhood of xj. To find the 
maximal or minimal result, SA algorithm executes as the following 4 steps. 
1. Initial temperature Tmax and initial answer X (0) is given. 
2. Based on X (i), a new resultant X’ which contains a certain newly produced component 

x’ ∈N(x(j)) is obtained. 
3. Whether X’ will be accepted as a new answer X (i+1) depends on the probability 

 P(X(i)→X’)= ( ') ( ( ))
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In other words, If f (X’) is less than f (X(i)) then X(i+1)=X’, otherwise X’ will be accepted as X 
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. If X’ is rejected, the control flow goes to step 2 
again until an acceptable X (i+1) is found. 
4. Step 2 and 3 is repeated until a final status defined before reached.  
It can be seen that the process of SA is a discrete status sequence. At each temperature Ti, its 
new status X (i+1) only depends on X (i) and has no relevance with X (i-1), X (i-2)…, X (0). 
Thus it is a Markov process. 

3.2 Essential factors for designing simulated annealing algorithm 
When a simulated annealing algorithm is designed, six essential factors should be taken into 
consideration. 
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3.2.1 Neighbor function (status production function) 
A neighbor function is used to generate a new candidate answer based on current status. 
When a neighbor function is designed, it should ensure that all the candidate answers in the 
state space can be reachable. In general, designing a neighbor function focuses on two key 
aspects, which are the rule of producing candidate answers and the distribution of 
candidate answers. The former determines how to produce a candidate answer based on 
current answer. The latter determines the probability of newly produced different candidate 
answers. Usually production rule of neighbor function is devised according to concrete 
problem and distribution of candidate answers takes uniform distribution, normal 
distribution, exponential distribution and Cauchy distribution .etc.   

3.2.2 Status transition probability (acceptance probability)  
Status transition probability is the likelihood that one feasible answer, denoted as xold, 
transits to another feasible answer, denoted as xnew . In other words, it is the chance that a 
new feasible answer will be accepted as current answer. As a rule, the status transition 
probability observes the followings. 
1. At the same temperature, the chance to accept the candidate answer which will 

decrease   objective function value is larger than that which will increase objective 
function value. 

2. As the temperature declines, the chance to accept the answers that will decrease 
objective function value should gradually become smaller and smaller. 

3. As the temperature is approaching zero, only the answers that make objective function 
value decrease can be accepted. 

In most of the cases, Metropolis rule as equation (5) is used. 

3.2.3 Cooling function  
Cooling function determines how the simulated annealing proceeds from a high 
temperature Tmax to lower temperature by stages. If the temperature decreases slow enough, 
the objective function value can concentrate on the global minima or maxima with an 
expensive cost. If the temperature decreases too fast, the global minima or maxima will not 
be reachable. Let T (t)  be the temperature at time t. The classical cooling function usually 
takes T (t) = Tmax/lg(1+t) and the fast cooling function usually takes T(t) = Tmax/(1+t).  These 
two types of cooling function can gurantee the algorithm converge to the global minima or 
maxima.  

3.2.4 Initial temperature  
Many experiments show that the higher the initial temperature T(0) is, the greater the 
chance of obtaining high quality final answer is. But the time consumed is also longer. 
Therefore, to get a better initial temperature Tmax, both optimization effectiveness and 
efficiency should be taken into consideration. Usually, the following several approaches can 
be applied. 
1. At first, a group of statuses is obtained by uniform sampling. Then, the initial 

temperature Tmax is defined as the variance of all the statuses’ objective function values. 
2. At first, a group of statuses is random obtained. Then, the biggest difference of objective 

function values, denoted as |△max| , is obtained by comparing every two statues. 
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Finally, the initial temperature Tmax is determined by a function which takes |△max| as 
parameter.  

3. The initial temperature Tmax is determined based on engineering experience for some 
specific problems. 

3.2.5 Metropolis sampling rule 
This rule is used to determine how many candidate answers will be produced at a certain 
temperature. The following policies are widely used. 
1. Test whether the average of object function values is stable or not. If so, the sampling 

will continue, otherwise the sampling will stop. 
2. Test whether objective function value difference in continuous steps is small enough. If 

so, the sampling will continue, otherwise, the sampling will stop. 
3. The sampling is constrained by fixed number of steps. 

3.2.6 Termination rule 
It is used to determine when the simulated annealing algorithm ends. It includes the 
following approaches. 
1. An ending temperature threshold is set. If the current temperature is below the 

threshold, the simulated annealing stops.  
2. The number of iteration is set. The simulated annealing process will proceed according 

to  the times of iterations.  
3. The simulated annealing will end if the objective values do not change in a series of 

continuous steps. 
4. The termination depends on whether the system entropy is stable or not. 

4. Multiagent decision making by simulated annealing algorithm 
It is natural to apply SA to multiagent decision making problem since the global payoff 
function needs to be optimized via a number of independent action variables of each agent. 
The process works as follows. First, the global payoff function is decomposed into a number 
of local terms.  Then, global payoff function will be rewritten as the linear combination of 
the local terms to avoid the curse of dimensionality. That is to say, given n agents, its global 
payoff function can be decomposed as follows: 

 v(a)= ...i i ij i j i, j,k i j k
i G i, j G i, j,k

v (a )+ v (a ,a )+ + v (a ,a ,a )
∈ ∈
∑ ∑ ∑ +….  (6) 

Here vi(ai) represents the payoff that an agent contributes to the system when acting 
individually, e.g. dribbling with the ball. vij(i,j) denotes the payoff of a joint action between 
agent i and j, and vijk(ai,aj,ak) depicts another coordination action involving three agents, e.g. 
pass from i to j, then j to k . Coordination among more agents can be added similarly if 
needed. This decomposition approach is different from MP for the number of agents is not 
limited while MP does. In MP algorithm, the global joint payoff function can only be 
decomposed into i i ij i j

i G i, j G
v (a )+ v (a ,a )

∈ ∈
∑ ∑ . 

Now SA can be smoothly applied to solve the multiagent decision problem. The goal is to 
find the optimal joint action, i.e., a*= )(maxarg ava . The pseudo-code of SA is presented in 
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Alg.1. The SA algorithm is implemented in a centralized version and performed by the 
agents in parallel, without assuming the availability of communications. The idea behind 
the algorithm is very straightforward. In each iteration (called an independent try), the 
algorithm starts with a random choice of joint action for the agents, then loop over all the 
agents. Each agent optimizes the global payoff function with his own action while all of the 
other agents stay the same. If the agent’s local optimization can yield a better joint action 
than the initial one, the new solution is accepted. Otherwise, the new solution is accepted 

with a probability of
( / )

1
1 Te− Δ+

 . The looping continues until the temperature T decayed from 

Tmax to a predefined threshold Tmin. Then a new random starting position is selected and the 
whole process is repeated. When an agent should send action to the server, he returns his 
own action from the optimal joint action found so far. 
Basically, what the SA does is to seek the global maximum of the global joint payoff 
function. As a stochastic algorithm, although SA can not guarantee the convergence to 
optimal joint action, in a rather short time it can find an approximately optimal solution. It 
has the following attractive features. First, SA is an anytime algorithm that can report an 
answer at any time. Secondly, in each independent try, agent i only has to iterate his own 
actions instead of all combinatorial actions of his neighbors, thus makes the algorithm 
tractable. 
 

Algorithm 1. Pseudo-code of the simulated annealing algorithm 
Define: G ={G1,G2,…,Gn} the agents who want to coordinate their actions 
Define: v (a) the global joint payoff function  
Define: a* the optimal joint action so far  
Define: ai the action of agent i 
Define: ai* the optimal action of agent i found so far 
Define: a-i the actions of all agents but agent i 
 g←0 
 t←0 
 While t<MaxTries do 
  a = random joint action 
  T← Tmax 

   repeat 
   for each agent i in G do 
           a’=argmax ia (a-i∪ai) 
          △←v(a’)-v(a) 
          if (△>0) then 
          a←a’ 
          else 

         a←a’ with probability )/(1
1

Te Δ−+
 

         end if 
         if v(a)>v(a*) then 
         a*←a 
         g←v(a*) 
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           choose ai* from a* 
           end if 
           if should send action to server then 
           send ai* to server 
           end if 
   end for 
   T←T.decay 
  until T<Tmin 

  t←t+1 
 end while 

5. Experiments 
In this section, the simulated annealing algorithm is evaluated by comparing it with other 
algorithms, especially with variable elimination algorithm. The following subsections include 
three parts. The first subsection describes the test bed of experiment since there is no 
standard benchmark to use. The remaining two subsections give the details of the 
experiment. It runs in two stages. In the first stage, the number of agents and the number of 
different actions per agent are fixed to test the scalability of the two algorithms when the 
number of neighbors per agent grows. In the second stage, the relative payoff SA returned 
and the optimal payoff produced by VE is compared to evaluate SA algorithm’s performance.  

5.1 Test bed setting 
Since there is no standard benchmark to evaluate multiagent decision algorithm, a random 
generator (RG) is used to generate all test sets. The inputs of RG include the number of 
agents |G|, the number of different actions per agent |A|, maximum number of neighbors 
per agent nrs, and the number of payoff functions each agent has nrρ. It is believed that these 
aspects should be sufficient to describe the difficulty of the coordination problem. The 
output of RG is a set of payoff functions. Each function is a value rule <ρ : υ>, which is first 
used by literature (Guestrin & Venkataraman , 2002) and proved suitable for many real-
world applications. The global joint payoff function is thus represented by the sum of value 
rules of all agents. A sample output of RG with |G| = 4, |A| = 4, nrs = 3, nrρ = 1 is shown in 
table 1. 
 

<ρ : υ> 
< a1 = 3 ∧ a3 = 3 ∧ a4 = 4 : 7.19085 > 
< a2 = 4∧a3 = 4 : 4.67774 > 
< a1 = 1 ∧a2 = 1 ∧ a3 = 2 ∧ a4 = 2 : 4.67774 > 
< a1 = 4 ∧ a3 = 2 ∧ a4 = 1 : 4.67774 > 

Table 1. Sample output of RG 
Here the integer value of ai is an action index and is mapped to a predefined action in real 
MAS such as dribbling, pass .etc. in a real RoboCup. The details will not be addressed here 
for the focus is concentrated on the performance of multiagent decision. The following two 
subsections give how to evaluate the performance of SA algorithms in details. All the 
programs are implemented in C++, and the results are generated on a 2.2GHz/512MB IBM 
notebook computer.  



Real Time Multiagent Decision Making by Simulated Annealing 

 

85 

5.2 Scalability of SA algorithm 
In this stage, 120 coordination problems are generated and each one is assigned with 4 test 
sets based on different actions per agent. The aim of this experiment is to evaluate the 
scalability of SA algorithm. For the problem in each test set, the settings are as follows. The 
number of the agents is set to |G| = 15. Each agent has nrρ = 8 value rules with different 
number of neighbors. The payoff in each value rule is generated from a uniform random 
variable U [1, 10]. The number of neighbors k in each value rule is in the range k ∈ [1, nrs]. 

Each value has a chance of  neNr
k
⎛ ⎞
⎜ ⎟
⎝ ⎠

/ 2 neNr .  

When applying VE, the algorithm is speed up by eliminating the agent with the minimum 
number of neighbors. When running SA, MaxTries is set to 20, the highest temperature Tmax 
is 0.3, and lowest temperature Tmin is 0.05. The temperature decay of this algorithm is in 
proportion to nrs.  Therefore, if certain value rule contains a large number of agents, the SA 
algorithm will search deeply in an independent try, vice versa. To weaken the side effect of 
hardware and operating system the experiment is repeated 10 times and the average is 
adopted as the measure.  Fig. 2(a)–2(d) gives a clear picture of the timing results for the four 
 

(a)  Timing comparisons for VE and SA (4 
actions per agent). 

 
(b)  Timing comparisons for VE and SA (6 

actions per agent). 

(c)  Timing comparisons for VE and SA (8 
actions per agent). 

 
(d)  Timing comparisons for VE and SA (4 

actions per agent). 

Fig.2. Time consumed comparisons for both VE and SA  
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test sets. It can be easily seen that the running time of SA algorithm grows linearly as the 
number of the neighbors per agent increases. In contrast, the time of VE algorithm grows 
exponentially, since it must enumerate all neighbors’ possible combination actions in each 
iteration. 
Furthermore, when the average number of neighbors per agent is more than 3.5, VE can not 
always compute the optimal joint action so these tests are removed from the test sets. In 
sum, the SA algorithm outperforms the VE algorithm with respect to scalability and this is 
especially meaningful in multiagent decision scenario. 

5.3 Relative payoff comparison  
In the second stage, 6 coordination problems are generated. Each problem has its own 
settings such as number of agents, number of neighbors per agent .etc.. VE and SA are both 
employed to solve them. When SA is applied, instead of starting with a random choice for 
all agents, in ith independent try, the agent selects action according to the ith highest value 
rule if he is involved; otherwise the action is selected randomly. The MaxTries is set to 200, 
so that SA has enough time to run. Other settings are the same as the first stage.  
To give a clear comparison of VE and SA, the payoff axis is scaled so that the global 
maximum payoff is 1. The time axis is also scaled so that the whole time taken by VE to 
terminate is 1. Thus the points in the figure can be seen as the fraction of the payoff and the 
running time of VE. The results of SA will be scaled to its VE companion. The experiment is 
also repeated 10 times to weaken hardware and software’s side effect.  
The relative payoff found by the SA with respect to VE is plotted in Fig. 3(a)–3(f). It can be 
seen SA performed very well. It is obvious that the near optimal result is found in all tests. 
In loosely connected coordination problem with few actions, i.e., Fig. 3(a), SA converges to 
the maximum payoff with only the 60% time that VE takes. However, if the number of 
actions is big as Fig. 3(b), SA can not reach the optimal result although it can find near 
optimal solution (96% payoff) quickly. Further experiments show that if the joint action 
space is huge (more than 15 agents, and each agent has more than 10 actions) the acceptable 
probability should be increased to speed up the convergence to optimal result. This is 
because in such situations, a little higher acceptable probability can increase the chance of 
stochastic movement of SA. This technique help SA jump away from local optimizations 
and cover the joint action space as possible as it can. But the exact relationship between 
acceptable probability and the convergence speed is still not very clear. For the medium 
connected problems (Fig. 3(c)–3(d)), SA can compute the optimal policy with a little fraction 
of time (2%–6%) that variable elimination needs to solve the same problem. Fig. 3(e) and  
Fig. 2(f) give us a strong impression that SA can compute more than 98% payoff within the 
time ranges between 0.015% to 0.2% of the time VE takes in the densely connected problems.  
Other unpublished tests are also carried out. For example, SA is compared with max-plus 
algorithm informally. The experiment shows that when reaching the same relative payoff, 
the time difference between the two algorithms is at most 5%. Although SA algorithm is not 
much faster than max-plus,  it is still believed that SA approach is more appropriate for 
complex coordination problems, since in these problems the coordination dependencies in 
the value rule is often more than two, therefore max-plus can not be applied directly.  
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(a)  |G | = 14, nrs = 2, nrρ = 10, |A| = 5 

 
(b)  |G | = 14, nrs = 2, nrρ = 10, |A| = 10 

 
(c)  |G | = 12, nrs = 4, nrρ = 10, |A| = 4 

 
(d)  |G | = 12, nrs = 4, nrρ = 10, |A| = 8 

 
(e)  |G | = 10, nrs = 8, nrρ = 10, |A| = 4 

 
(f)  |G | = 10, nrs = 8, nrρ = 10, |A| = 8 

Fig. 3. Relative payoff found by SA with respect to VE. 

6. Conclusion  
In this chapter, SA algorithm is employed to solve real time multiagent decision making 
problem. Compared with exact method this chapter’s empirical evidences show that (1) this 
method is almost optimal with a small fraction of the time that VE takes to compute the 
policy of the same coordination problem; (2) the running time of SA grows linearly with the 
increasing number of neighbors per agent;( 3) it is an anytime algorithm which return result 
at any time. For above reasons, it is believed that SA is a feasible approach for action 
selection in large complex cooperative autonomous systems.  
As future research, an appropriate setting of the acceptable probability will be figured out, 
especially the decay rate in SA. Some recent work shows that neural network algorithm can 
produce a good decay rate for larger problems. Such techniques may be employed to solve 
multiagent decision making problem. Furthermore, whether reinforcement learning 
algorithms can be applied to automatically learn the payoff in each value rule is to be 
investigated  
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1. Introduction 
In decision making process, there are some critical components. In most of the time, 
numbers of these critical components are numerous and they affect each other, so analyzing 
them is not easy. The efficiency of decision-making depends largely on the ability of 
decision-makers to analyze the complex cause and effect relationships and take productive 
actions based on the analysis. In complex systems, different components affect each other, 
and these cause and effect relations show system behavior. Cause and effect are two 
different concepts. Causes tell the reason why something happened, whereas effects are the 
results of that happening. In most of the systems, managers draw a system 
conceptualization graph to understand all of the system aspect. This diagram shows the 
cause and effect relations between system components. The information about these 
relations generated and enriched over time with the experience of managers who are expert 
in that field. There are two big challenges, at first, if there is no expert to construct the above 
mental model how this must be drawn and secondly, if there is a way to construct that 
diagram with more components, how they could be analyzed. Therefore, a new mechanism 
must be used to bridge these two gaps and constituted with experts in first case and cluster 
the components into similar categories based on their behaviors for the second one. This 
article organized as follows: This paper is organized as follows: section 2 states some basic 
concepts and definitions of Fuzzy Cognitive Map (FCM) and history of FCM Automatic 
construction.  The proposed learning model is presented in section 3. While, section 4 
presents the experimental evaluation and discussion of the achieved results and model 
effectiveness. Finally, Section 5 covers conclusions and future research directions. 

2. Theoretical background 
2.1 Fuzzy cognitive map 
Cognitive Maps contain components and their corresponding relations, which may be 
positive, negative, or neutral. A cognitive Map is a directed graph that its nodes correspond 
to relevant concepts and the edges state the relation between these two nodes by a sign. A 
positive sign implies a positive relation; moreover, any increase in its source value leads to 
increase in its target value. A negative sign presents negative relation and any increase or 
decrease in its source value leads to reverse effect to its target value. In a cognitive map if 
there is no edge between two nodes it means that, there is no relation between them.  
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Cognitive Maps were initially introduced by Robert Axelrod in 1976 and applied in political 
science [1]. Also it was used in numerous areas of application such as analysis of electrical 
circuits [2], medicine [3], supervisory systems [4, 5, 6], organization and strategy planning 
[7], [8], analysis of business performance indicators [9], software project management 
[10,11], Information retrievals[12], modeling of plant control [13], system dynamics and 
complex systems [14, 15, 16, 17, 18, 19, 20, 21] and modeling virtual world [22], etc.  
In 1988, Kosko introduced a new extension concept for Cognitive Map and named it fuzzy 
cognitive maps (FCM) [23, 24, 25, 26]. In a FCM, the relation between two nodes is 
determined by taking a value in interval [-1, 1]. While -1 corresponds to the strongest 
negative, +1 corresponds to strongest positive one. The other values express different levels 
of influence. This model can be presented by a square matrix called connection matrix. The 
value of relation between two nodes is set in their corresponding cell. In the connection 
matrix, row and column are associated with a source node and a target node, respectively. 
An FCM consists of nodes, Ci, i = 1…N, where N is the total number of concepts Each arc 
between two nodes Ci and Cj , has a weight Fij , which is the strength of the causal link 
between Ci and Cj . The sign of Fij indicates whether the relation between two concepts is 
direct or inverse. The direction of causality indicates whether the concept Ci causes the 
concept Cj or vice versa. Thus, there are three types of weights: 
Fij > 0 express positive causality, 
Fij < 0 express negative causality, 
Fij = 0 express no relation, 
A simple FCM with five nodes and ten weighted arcs is depicted in Fig.1.  
 

 
Fig. 1. A simple Fuzzy Cognitive Map (FCM) 

Experts develop a FCM or a mental model manually based on their knowledge in the area 
under study. At first, they identify key domain issues or concepts. Secondly, they identify 
the causal relationships among these concepts and thirdly, they estimate causal 
relationships strengths. The achieved graph (FCM) shows not only the components and 
their relations but also the strengths. 
A group of experts can be utilized to improve the results. All experts are asked to determine 
the relevant factors in a brain storm meeting. They discuss about main characteristics of the 
system, for example, number and kinds of concepts and relation between nodes, which are 
in the FCM. Then, they determine the structure and the interconnections of the network 
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using fuzzy conditional statements or fuzzy rules. Each expert may draw his own individual 
FCM, which can be different from the others. In order to deal with these diagrams, the 
assigned weights by each expert can be considered and a new FCM will be constructed by 
all experts. Thus, this constructed FCM will represent the knowledge and experience of all 
related experts. [27], [28]  
FCMs can be produced by expert manually or generated by other source of information 
computationally. They named manual FCMs and automated FCMs. 
In Fuzzy Cognitive Maps like Cognitive Map, the influence of a concept on the others is 
considered as “negative”, “positive” or “neutral”, but all relations are expressed in fuzzy 
terms, e.g. very weak, weak, medium, strong and very strong. The following set of linguistic 
variables is also considered:   
 

{negatively very strong, negatively strong, negatively medium, negatively weak, zero, positively 
weak, medium, positively strong and positively very strong}.  
 

The corresponding membership functions for these terms are shown in Fig. 2: 
 

       nvsµ      nsµ          nmµ          nwµ          zµ           pwµ         pmµ           psµ          pvsµ  

 
 
 
 
 
 
 

 

 

Fig. 2. Membership functions 
In a FCM, all fuzzy variables are mapped into interval [-1, 1]. A simple way is to map fuzzy 
expression to numerical value in a range of [-1, 1]. For example, positively weak is mapped 
to 0.25, negatively medium to -0.5, positively strong to 0.75. [29] Then, all the suggested 
linguistic variables, are considered and an overall linguistic weight is obtained, with the 
defuzzification method of Centre of Gravity (COG) [30], is transformed to a numerical 
weight belonging to the interval [-1, 1].  
In general, the manual procedures for developing FCM have occurred, when at least there is 
one expert who has expertise in the area under study. In some situations, a FCM could not 
be constructed manually such as:   
• There is no expert to define a FCM. 
• The experts’ knowledge is different with each other and they draw different FCM.  
• There are large amount of concepts and connections between them, which could not be 

drawn without mistakes.  
The above situation shows that in many cases, to develop a FCM manually becomes very 
difficult and experts’ intervention could not resolve the problem. Therefore, a systematic 
way should be found in order to bridge this gap. For example designing a new method 
could eliminate the existing weakness. The related knowledge can be extracted by analyzing 
past information about the given systems.  

-1          -0.75           -0.5          -0.25              0              0.25            0.5             0.75            1 
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2.2  Automated FCM constructin  ( related works) 
When the experts are not able to express their expertise or even there is no expert in the area 
under studied to add some expression based on her/his expertise, therefore a new way 
should be defined. For these reasons, the development of computational methods for 
learning FCM is necessary [31]. In this method, not only casual relations between nodes, but 
also the strength on each edge must be achieved based on historical data. The required 
knowledge is extracted from historical data by means and new computational procedures. 
Many methods for learning FCM model structure have been recently proposed. In general, 
these methods are categorized in two min groups: 
• Hebbian algorithm  
• Genetic algorithm  
Soft computing approach such as neural networks and genetic algorithm can be used to 
discover appropriate knowledge from historical data in the form of a graph or a FCM. Many 
researches worked on these areas by investigating FCM learning methods using historical 
data. 
Kosko proposed a new model by use of simple Differential Hebbian Learning law (DHL) in 
1994, but he used this model to learning FCMs without any applications [32]. This learning 
process modified weights of edges existing in a FCM in order to find the desired connection 
matrix. In general, when the corresponding concept changes, the value of the related edges 
for that nodes will be modified too.  
In 2002, Vazquez introduced a new extension to DHL algorithm presented by Kosko. He 
used a new idea to update edge values in a new formula [33]. Another method of learning 
FCMs based on the first approach (Hebbian algorithm), was introduced in 2003 by 
Papageorgiou et al. He developed another extension to Hebbian algorithm, called Nonlinear 
Hebbian Learning (NHL) [34]. Active Hebbian Algorithm (AHL) introduced by 
Papageorgiu et al. in 2004.  In the recent method, experts not only determined the desired 
set of concepts, initial structure and the interconnections of the FCM structure, but also 
identified the sequence of activation concepts [35].  
Another category in learning connection matrix of FCM is application of genetic algorithms 
or evolutionary algorithms. Koulouriotis et al. applied the Genetic Strategy (GS) to learn 
FCM’s structure In 2001 [36]. In mentioned model, they focused on the development of an 
ES-based procedure that determines the values of the cause-effect relationships (causality). 
Parsopoulos et al also published other related papers in 2003. They tried to apply Particle 
Swarm Optimization (PSO) method, which belongs to the class of Swarm Intelligence 
algorithms, to learn FCM structure [37, 38]. Khan and Chong worked on learning initial state 
vector of FCM in 2003. They performed a goal-oriented analysis of FCM and their learning 
method did not aim to compute the connection matrix, and their model focused on finding 
initial state vector for FCM [39]. In 2005, Stach et al. applied real-coded genetic algorithm 
(RCGA) to develop FCM model from a set of historical data in 2005 [28]. 
Other work to train a FCM was done by Konar in 2005. He worked on reasoning and 
unsupervised learning in a FCM. In this paper, a new model was introduced for 
unsupervised learning and reasoning on a special type of cognitive maps realized with Petri 
nets [40].  In 2006, Parsopoulos et al combined these two categories and published a paper 
about using evolutionary algorithms to train Fuzzy Cognitive Maps. In their model, they 
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investigated a coupling of differential evolution algorithm and unsupervised Hebbian 
learning algorithm [29]. Our model based on Simulated Annealing and genetic algorithm is 
a new method to learn connection matrix rapidly.  Table 1 shows a comparison between 
some existing methods. The table compares the methods based on several factors, such as 
learning goal, kind of input historical data, type of transformation function, size of FCM 
model, type of learning strategy and whether experts are involved in model or not. In this 
table Single historical data consisting of one sequence of state vectors and multiple historical 
data consisting of several sequences of state vectors, for different initial conditions. When 
initial human intervention is equal “Yes&No” it means that human interaction is necessary 
but later when applying the algorithm there is no human intervention needed. 
This study aims to provide a learning method, which avoids disadvantages of the existing 
methods. It uses Simulated Annealing to develop FCM connection matrix based on data 
consisting of one sequence of state vectors. In contrast, the approach introduced in [36], 
requires a set of such sequences. The proposed method is fully automatic, i.e. in contrast to 
NHL and AHL methods it does not require input from a domain expert. This algorithm 
learns the connection matrix for a FCM that uses continuous transformation function, which 
is a more general problem that the one considered in [33]. The quality of RCGA algorithm 
[28] deteriorates with the increasing size of the maps. In general, the RCGA method 
achieved maps up to 6 nodes while; our algorithm is satisfied for learning FCM with nodes 
more than 6 with excellent quality.  In next section, it shows that this algorithm is better than 
RCGA algorithm which proposed by Stach in learning FCM. 
 

Algorithm learning goal Human 
 Intervention

type of 
data used

transformation 
Function NO of node learning  

algorithm 

DHL Connection
matrix No Single N/A N/A Hebbian 

BDA Connection
matrix No Single Binary 5 7 9 Modified 

Hebbian 

NHL Connection
matrix Yes&No Single Continuous 5 Modified 

Hebbian 

AHL Connection
matrix Yes&No Single Continuous 8 Modified 

Hebbian 

GS Connection
matrix No Multiple Continuous 7 Genetic 

PSO Connection
matrix No Multiple Continuous 5 Swarm 

GA Initial vector N/A N/A Continuous 11 Genetic 

RCGA Connection
matrix No Single Continuous 4,6,8,10 Genetic 

SA 
(This paper) 

Connection
matrix No Single Continuous Any 

Number SA 

Table 1. Overview of some learning approaches applied to FCMs 
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3. The proposed learning method by SA 
This new method proposed a solution for automatic construction of Fuzzy Cognitive Map 
by using Simulated Annealing. The focus of this model is to determine cause-effect 
relationships (causality) and their strength.  

 3.1 Problem definition 
As mentioned before, a cause-effect relation is specified by a related Connection matrix. The 
elements of this matrix are the values of edges in the FCM. The aim of the proposed method 
is to find these elements. The relations between nodes and edges are calculated as: 

1i
1

( )  ( )
n

t ji j
i

C f e C t+

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  

where ije ’s  are the elements of the matrix and  f  is a transform function which includes 

recurring relation on t >=0 between C(t + 1) and C(t)  that can be presented by  a logistic 
function like: 

( )
1

1 cx
f x

e−
=

+
 

Eq. (1) and Eq. (2) can be expressed by Eq.(3): 

i 1O ( ) ( )n i nutput t E Input t+ = ×  

iInput ( )nt  is input data for node i, i 1Output ( )nt + is its corresponding output data and E is the 
Connection matrix of FCM. Eq. (3) implies that for each node i its corresponding output can 
be calculated. E (Related connection Matrix) is a vital factor in Eq. (3) which should be 
determined in the FCM learning process. The proposed FCM learning methods forms 
structure of a FCM and is able to generate state vector sequences that transform the input 
vectors into the output vectors. When all real input and output values of a FCM are in hand, 
the most important step is to find a new solution for the FCM and calculate the estimated 
output related to this new FCM.  

1( ) ( )estimated proposed
i n i nOutput  t E Input t+ = ×  

According to Eq. (4), 1( )estimated
i nOutput  t +  is the estimated output and ( )i nInput t  is its 

corresponding input for the ith node.  proposedE   is the new proposed matrix. The real output 
is 1( )real

i nOutput  t + and the difference between real and estimated outputs is calculated by: 

1 1( ) ( )estimated real
i n i nError Output  t Output  t+ += −  

By using the later two equations, the objective is defined as minimizing the difference 
between real and estimated outputs. This objective is defined for all nodes as:  

1 1
1 1

( ) ( )_
K N

estimated real
i n i n

n i
t  tTotal Error Output Output+ +

= =

= −∑∑  
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Where N is the number of nodes and K is the iteration.   

i 1 0 , ..., 1( ) O ( )       i n n t KInput t utput t + ∀ = −→  

If  ( )i nI n p u t t  defined as an initial vector, and i 1O ( )nutput t + as system response, K-1 pairs in 
the form of {initial vector, system response} can be generated from the input data. 
As mentioned in section 3, there are many methods for automatic constructing FCM matrix, 
for example, Stach et al. constructed this matrix by a Real Code Genetic Algorithm (RCGA) 
with simple operators. In this paper, we concentrate on simulated annealing as a heuristic 
model in learning FCM.  Fig.3 shows the outline of the proposed method: 
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Fig. 3. the diagram of new model 

The proposed learning model uses simulated annealing is used to escape the local minimum 
solution and to improve the optimum solution. The following sections provide details about 
simulated annealing and compare it with GA. It assumed that readers are familiar with GA 
and SA. A useful summary about relevant GA and SA can be found in [41, 42, 43]. Also, it is 
tried to demonstrate all essential elements of propose method, including structure of 
solution coding (chromosomes), generation of initial solution, initial temperature, fitness 
function, stopping condition, genetic operators in GA, Neighboring solutions in SA, and 
selection strategy. 

3.2 A proposed SA method for learning FCM 
In this section, SA algorithm for learning FCM is introduced. Simulated annealing is an 
algorithm for discrete optimization backs to the early 1980s. It was originally developed as a 
simulation model for a physical annealing process and hence it is referred to as simulated 
annealing. In simulated annealing, a problem starts at an initial solution, and a series of 
moves (i.e., changing the values of decision variables) are made according to a user-define 
annealing schedule. It terminates, when either the optimal solution is attained or the 
problem becomes frozen at a local optimum that cannot be improved. To avoid freezing at a 
local optimum, the algorithm moves slowly (with respect to the objective value) through the 
solution space. This controlled improvement of the objective value is accomplished by 
accepting non-improving moves with a certain probability that decrease as the algorithm 
progresses. Important parts of the simulated annealing algorithm for learning FCM are 
explained as follows: 
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SA algorithm 

 
 

For designing the SA algorithm, many principle factors considered and introduced here: 
Solution coding 
The solution coding for SA is considered in Figure (4). 
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e41 e42 E43 E44 E45

e51 e52 E53 E54 E55

Fig. 4. the solution code structure  

* Initialization: Select an initial solution 1x  in X 

 Initialize the best value 
bestF  of  F  and the corresponding solution

bestx : 

)( 1xFF best =  

1xxbest =  
Initialize N ,T , α  

 

 Do while not stopping condition is fulfilled α>+1nT  
   Do (n < N) and (Not Change) 
 n=n+1 

Consider neighbourx at random in the neighbourhood  

If  )()( xFxF neighbour =  then counter=counter+1 and   change=false 

If  )()( xFxF neighbour <  then neighbourxx ←  

         If  ( )neighbour bestF x F<  the ( )best neighbourF F x← and neighbourbest xx ←  

         If  )()( bestneighbour xFxF >   
                   
                                      Consider R= a random number in [0 , 1],   

                    bestneighbour FxF −=Δ )(  

                     

Te
Δ−

+

=

1

1α  

                       If    R < α    Then      neighbourxx ←       

      End loop  

      n
T

n T
e

T *
1

1
1 Δ−+

+

=   ,     N=0 ,      Change=false 

End loop
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Fitness function 
As mentioned before, the total difference between real and estimated outputs for all nodes is 
defined in Eq(7).  This error can be used as the core of fitness function. 

Fitness function= 
2

1 1
1 1

h  ( ) ( )
K N

estimated real
i n i n

n i
 p  pOutput Outputα + +

= =

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑  

α is the parameter used to normalize error rate, which equal to ( )K-1 .N
1  (K and N were 

explained before)  h is an auxiliary function. The auxiliary function h was introduced for two 
main reasons: 
• To ensure that better individuals correspond to greater fitness function values.  

Argument of this function is the summed error rate, and thus needs to be inversed. 
• To embed non-linearity that aims to reward solution code, which are closer to the 

desired solution.  

The following function h was proposed:  
1h(x)

ax 1
=

+
 where parameter a  is established 

experimentally. The fitness function is normalized to the (0, 1] where It is zero for worse 
case or it is equal to one for an ideal chromosome, which results is exactly the same state 
vector sequence as the input data.  The mathematical modeling of this problem is presented 
here: h(x)Z  Max =  
Initial solution 
An initial solution is a starting solution (point) that will be used in the search process and 
considered as a random solution. In this research, the initial solution generates randomly. 
Initial temperature and cooling schedule 
An initial temperature 0T  and a cooling schedule (α ) are used to control the series of 
moves in the SA search process. In general, the initial temperature should be high enough to 
allow all candidate solutions to be accepted. Cooling schedule (α ) is the rate at which 
temperature is reduced. In this paper, a classical schedule is represented in figure (5). 
Starting from T0, the temperature is decreased through multiplication by a fixed factor (α ) 
( 10 <<α ).  
 

 
Fig. 5. temperature schedule 
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Neighboring solutions 
Neighboring solutions are the set of feasible solutions that can be generated from the current 
solution. Each feasible solution can be directly reached from current solution by a move (like 
genetic operations mutation or inversion) and resulted neighboring solution. 
Stopping criteria 
Here are four criteria for stopping the algorithms (GA, SA) as follows:  
• Maximum number of the established generation (G).  
• Least variance of the generation (µ)  
• Maximum run time for the algorithm (MRT). 
• The number of temperature transitions is used as a stopping criterion. Furthermore, the 

SA algorithm can be terminated, when the term ( ε>+1nT ) or stopping condition is 
satisfied. ε  can be a constant or calculated by other parameters. 

4. Computational results 
In our experiment, the problem data were used to construct FCM by using SA on a PC 
Pentium IV, 1.6 GHz. The meta-heuristic algorithms were developed using Visual Basic 6. 
Two algorithms, the genetic algorithm which used by the others and Simulated Annealing 
ran with mentioned data and the Error and time consuming saved. Table 2 shows the 
essential parameters for these algorithms. The aim of the experiments is to assess quality of 
the proposed method for learning FCMs. Two algorithms, the genetic algorithm, Simulated 
Annealing ran with different Node numbers: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and for 
every run the Error and time consuming saved. Each considered FCM, in terms of the 
number of nodes, was simulated 100 times with the two algorithms. The obtained results are 
shown in table 3.  
 

Parameter 
name Value Comments 

Generation 300 The Max Number of Generation 
Population 1000 The Number of population in each Generation 

cp  0.95 Probability of crossover 

mp  0.90 Probability of mutation 
δ  0.1 For stopping criterion (when algorithm δ>+1nT  stops) 

nT  nn TT *α=+1  Value of temperature in transition (n) 

0T  5000 The first temperature 

α  
Te
Δ−

+

=

1

1α

 

α denotes the temperature and cooling schedule in SA 
bestneighbour FxF −=Δ )(  

µ 10 Least variance of the generation 
MRT 0.5 hour Maximum run time for the algorithm 

a 10000 
1h(x)

ax 1
=

+
 parameter a is established experimentally 

Table 2. Parameters in two algorithms  
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 Genetic algorithm   Simulated Annealing  

NO  Node Fitness Function L2 
(Error ) Time(sec)  Fitness Function L2 

(Error) Time(sec) 

2 1.7998E-06 40  3.5000E-05 2.96 

3 1.8308E-06 40  3.8308E-05 2.68 

4 3.0140E-06 40  4.8140E-05 2.39 

5 5.6714E-06 40  5.2714E-05 2.18 

6 1.5381E-05 40  5.4381E-05 1.85 

7 2.4262E-05 40  6.4262E-05 1.64 

8 3.1149E-05 40  7.1432E-05 1.51 

9 6.4874E-05 40  7.4320E-05 1.25 

10 1.0917E-04 40  7.6345E-05 1.09 

11 1.5211E-04 40  8.2345E-05 0.96 

12 1.9053E-04 40  8.7432E-05 0.75 

13 2.6694E-04 40  1.0060E-04 0.6 

14 3.2980E-04 40  1.0604E-04 0.48 

15 4.0198E-04 40  1.2029E-04 0.43 

Table 3. Experiment results with different fitness functions and times 

The results of these experiments show that these algorithms gradually converge into a high-
quality candidate FCM.  Two examples of FCM learning experiments based on GA and SA 
are plotted in Fig.6-1 and Fig.6-2. 
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Fig. 6-1. An example of  SA  fitness Function which show that error coverges to near zero 
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Fig. 6-2. An example of  GA  fitness Function which show that error coverges to near zero 

Fig. 7. shows the error of GA and SA algorithms. This figure shows that SA algorithm 
produce better solution with less error for FCM with node number more than 10. That 
means SA is appropriate for learning FCM with nodes more than 10. 
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Fig. 7. GA and SA errors for different nodes 

Fig. 7. compares the time consuming with GA and SA algorithms. This figure shows that 
simulated annealing algorithm, as a learning algorithm for FCM is faster than genetic 
algorithms in the same problem. Therefore, The SA algorithm found related solutions in less 
computational times than GA.  
In these two algorithms, the error of GA in FCM with little Node is less that Simulated 
annealing. However, in FCM with more nodes the error of SA as a new learning algorithm is 
less that GA. Considering the results of Tables (3) shows that the presented metaheuristic 
algorithms are able to find and report the near-optimal and promising solutions in a 
reasonable computational time. This indicates the success of the proposed method in 
learning FCM. In general, we can conclude  that the SA algorithm meanly found better 
solutions than GA in less computational times for nodes more than 10. 
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Fig. 8.  Time consuming with GA and SA algorithms 

5. Conclusion 
In this paper, we have developed a new method for learning FCMs by SA algorithm. It has 
been shown that SA not only can improve the speed of learning process, but also can 
improve the quality of learning FCMs with nodes more than 10. The  quality of learning  
method based on GA deteriorates with the increasing size of the maps but SA over comes 
this difficulty and when the size of maps increase the GA algorithms replaced with SA 
algorithms. According to these properties, a new method proposed. The results show this 
new method is very effective, and generates FCM models that can almost perfectly represent 
the input data.  In general, the proposed method achieves excellent quality for maps in 
every size of FCM.  The produced results could provide some guidelines for other learning 
methods. The future work will concern on the improvement of the proposed learning 
method.  One of interesting and open issues is using the other heuristic methods for 
learning FCMs and comparing them with the others. 
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1. Introduction    
Generating prescribed patterns in spatial allocation is a difficult and complex optimization 
task. Many spatial allocation problems require the arrangement of resources in ways that 
their patterns promote some desirable landscape functions (e.g., Taylor et al.,2007; De Clercq 
et al., 2007; Milder et al., 2008). The complexity of the optimization task comes from the 
simultaneous effects of siting multiple spatial entities that usually require complex formulae 
to quantify (Tomlin, 1990; Brookes, 2001). Such spatial allocation problems are combinatorial 
in nature, and often require the use of global optimization algorithms such as simulated 
annealing or genetic algorithms (Revees, 1993) to find good solutions. Furthermore, spatial 
allocation problems often exhibit substantial complexity, especially when analyses must 
consider multiple, often conflicting, objectives (Malczewski, 1999). Despite successful 
examples of using global optimization algorithms in solving spatial allocation problems 
(Brookes, 2001; Aerts & Heuvelink, 2002; Xiao et al., 2002), however, an increase in the 
number of spatial entities involved in allocation deteriorates the performance of the trial-
and-error mechanism of meta-heuristic algorithms.  
Recent efforts to solve spatial optimization have been made by developing approaches that 
use auxiliary rules (i.e., heuristics; e.g., Church et al., 2003; Duh & Brown, 2005; Duh & 
Brown, 2007). Heuristic approaches, if used appropriately, can greatly improve the 
performance and utility of spatial optimization algorithms in spatial allocation and 
interactive spatial decision-making. This chapter describes the design, implementation, and 
evaluation of a knowledge-informed simulated annealing (KISA) algorithm that applies 
heuristics in single and multi-objective spatial allocation problems. The discussion at the 
end of the chapter addresses the potential applications and limitations of the approaches 
presented. 

2. Spatial allocation problems 
Spatial allocation is to arrange spatial entities in a two dimensional space so that the 
resulting arrangement exhibits certain preferred characteristics. The spatial entities involved 
in spatial allocation problems have been represented either as cells in a gridded coordinate 
system or as two dimensional geometric objects (i.e., polygons). These representations 
correspond to the raster and vector data models in Geographic Information Systems (GIS), 
which usually are used to model geographic phenomena as continuous fields and discrete 
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objects respectively (Longley et al., 2005).  The allocation problems discussed in this chapter 
was to assign cells in a raster data model with different land-cover types (e.g., trees and 
built-up areas). Contiguous cells of the same land-cover types form landscape patches. 
Mathematic formulae quantifying the patterns of landscape patches were used as objective 
functions of the spatial allocation problems. The approach introduced here can be 
implemented in vector-based data model with modifications. 
There are various ways of quantifying patterns. Some examples are wavelet analysis (De 
Bonet & Viola, 1997), semivariance (Deutsch & Journel, 1992), Markov random field (Cross 
& Jain, 1983; German & German, 1984), and lacunarity (Dale, 2000; McIntyre & Wien, 2000). 
Recent development in landscape ecology provides a systematic way of understanding and 
quantifying landscape patterns in order to relate them to ecological or socioeconomic 
processes (e.g., Vos et al., 2001; Schmid-Holmes & Drickamer, 2001; McAlpine & Eyre, 2002; 
and Liu et al., 2003). The quantitative indices, also called landscape pattern metrics, provide 
ways of characterizing the composition or configuration, or both, of landscape patches on 
categorical maps (McGarigal & Marks, 1995). Because of the ecological implications of 
landscape pattern metrics, they could be used as the objective functions in spatial allocation 
problems that are intended to achieve ecological goals. I used a pattern metric that measures 
patch fragmentation as the pattern objective function of the optimization problem. The 
metric, PFF, developed by Riitters et al. (2000), is defined as the average proportion of cells 
among the eight neighboring cells of any cell of the same type (Equation 1). 

 PFF
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where dij, a neighborhood dummy variable, equals 1 when cell i and its neighbor j are of the 
same cover types, otherwise 0, wi equals 1 when cell i is of the cover type currently 
measured, otherwise 0, and  N is the number of pixels present in the landscape. PFF equals 0 
when all pixels of a cover type, if there are any, are isolated, and 1 when the landscape is 
completely covered by a seamless cover of that cover type. Examples of landscapes with 
different PFF values are shown in Fig. 1.  
 

(PFF = 0.958) (PFF = 0.277) 

  
Fig. 1. Example 18 by 18 landscape maps with 50% patch cells (dark color) 

The single objective spatial allocation is formulated in a two dimensional space that is 
composed of N cells, of which K cells (K < N) are foreground whose pattern is to be 
measured and N – K cells are background. The goal of the spatial allocation is to find the 
least fragmented landscape formed by a given number of patch cells. The problem is 
structured as follows:  

Maximize PFF  (2) 
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Subject to 
1

N

i
i

w K
=

=∑  (3) 

In the multi-objective spatial allocation problem, in addition to the PFF pattern metric, a cost 
surfaces (C) was used to define a second objective function. The objective function was 
evaluated by summing the cell values on the cost surface if the location was occupied by 
foreground cells. The two-objective optimization problem is expressed as follows:  

Maximize  PFF  (4) 

Minimize  
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i i
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where ci is the cost value at cell location i, wi equals 1 when cell i is a foreground cell. When 
multiple objectives are specified in an optimization problem, finding one best solution that 
optimizes all objectives is often impossible, especially when the objectives to be achieved 
conflict with each other. Earlier generations of optimization algorithms dealt with multi-
objective problems using a technique called scalarization, which collapses the multiple 
objectives to form a single objective (Sawaragi, Nakayama, et al., 1985; Eastman, Jin, et al., 
1995). Such an approach involves the conversion of multiple objectives into commensurate 
criteria, which usually requires direct consultation with decision makers in finding the final 
solutions. This technique has several significant weaknesses: 1) it can only be applied to 
problems that are mathematically formulated; 2) it is inefficient when applied to large 
problems; and 3) it may fail to find important solutions (Miettinen, 1999). With the 
improvement of computers and algorithms, CPU-intensive approaches have been 
developed to find multiple compromise solutions (i.e., Pareto optimal solutions) that 
represent the trade-offs between conflicting objectives. 

3. Knowledge-informed simulated annealing 
3.1 Knowledge-informed algorithms 
The term knowledge-informed optimization (Duh & Brown, 2005) is referred to as the 
algorithm that uses auxiliary knowledge (i.e., heuristics) of the nature and structure of 
spatial configuration to control the local search process in a global optimization algorithm.  
The main purpose of using auxiliary knowledge in a local-search algorithm is twofold: the 
auxiliary knowledge can reduce the search space, preventing unproductive search, or it can 
alter the structure of the solution space, making it easier to navigate to areas in the solution 
space where global optima are located. Empirical evidence indicates that optimization 
problems can thus be solved faster and easier (Pressey, Ferrier, et al., 1995; Sorensen & 
Church, 1996; Glover & Laguna, 1997). However, excessive use of inappropriate knowledge 
can generate significant errors in solving location problems and, very often, can result in 
sub-optimal solutions with different initial conditions (Church & Sorensen, 1996). 
A simple but effective way to generate neighboring solutions in the local search process 
used in simulated annealing is by swapping cells randomly selected from the current best-
solution. Knowledge-informed simulated annealing (KISA) uses some rules, instead of 
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complete random selections, to guide the generation of neighboring selections. The 
compactness rule (Duh & Brown, 2005) was used here to solve the spatial allocation problem 
whose goal was to find the least fragmented landscape. The KISA compactness rule 
preferentially move a randomly selected patch (i.e., foreground) cell to a location that 
promotes patch compactness, i.e., one with a high number of neighboring patch cells. PFF 
increases greatly when a patch cell is placed on a location where most neighbors are of the 
same cover type. Such an allocation not only increases the individual PFF for the patch cells 
being moved but also increases the individual PFF of the neighboring cells. 

3.2 Multi-objective optimization 
In recent decades, many techniques have been developed to address the needs of multi-
objective decision-making. The most popular is the method of generating the efficient 
frontier, also known as the Pareto front. A Pareto front is formed by solutions whose 
performance on one objective cannot be improved without sacrificing performance on at 
least one other, a condition known as Pareto optimality (Pareto, 1971). A common way to 
determine Pareto optimality is using the concept of Pareto dominance. A Pareto optimal 
solution is referred to as a non-dominated solution. 
In an optimization problem with D objectives, a solution x is said to dominate another x' 
(denoted 'x x ) if and only if 

 ( ) ( ')i if x f x≥ 1,...,i D∀ =  and ( ) ( ')i if x f x>  for some i,  (7) 

where ( )if x  is the objective function value of objective i for a solution x. This formulation 
has assumed the problem is one of maximization, but the modifications necessary for a 
minimization problem are clear. 
A set of solutions is said to be a non-dominated set (or Pareto set) if no member of the set is 
dominated by any other member. A non-dominated set is usually used as an approximation 
of the true Pareto front. The Automatic Accumulated Ranking Strategy (AARS) proposed by 
Goldberg (1989) provides a way to identify the non-dominated set in a set of solutions. 
AARS ensures that all the non-dominated solutions in the population are assigned rank 1 
and removed from the population temporarily, then a new set of non-dominated solutions 
are assigned rank 2, and so forth. After all solutions have been assigned a rank, the solutions 
that have a Pareto ranking of 1 are non-dominated solutions. The pseudo-code of AARS 
algorithm is illustrated in Algorithm 1.  
 

SUBROUTINE Set_Pareto_Ranking 
BEGIN: 

Mark each solution in the solution set as not evaluated 
Set Current Ranking to 1 
EVALUATION: 
IF there are any not-evaluated solutions, THEN 

FOR EACH not-evaluated solution,  check If_solution_is_dominated 
IF it’s not dominated, THEN 

Set its Pareto Ranking as the Current Ranking 
Mark the solution as evaluated 

After checking all solutions, increase Current Ranking by 1 
REPEAT EVALUATION 

END 
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SUBROUTINE If_solution_is_dominated 
BEGIN: 

FOR all other solutions in the solution set that are not evaluated or 
have a Pareto Ranking that equals the Current Ranking, 

Check if there exists at least one solution that has at least one objective function value 
that is larger (in the case of maximization) or smaller (in the case of minimization) than 
that of the target solution 

IF ‘‘Yes’’, THEN the solution is dominated, ELSE, the solution is not dominated 
END 

Algorithm 1. The pseudo-code of the Automatic Accumulated Ranking Strategy (Goldberg, 
1989) 

3.3 Multi-objective pareto simulated annealing 
Multi-objective simulated annealing is conceptually identical to a single-objective simulated 
annealing algorithm. Czyzak & Jaszkiewicz (1998) modified simulated annealing algorithm 
for multi-objective optimization problems and developed Pareto simulated annealing (PSA). 
Instead of using just one candidate for the final solution, as done in the single-objective 
simulated annealing algorithm, PSA uses a set of interacting solutions, called the generating 
set S, at each iteration to propagate new solutions. The initial set of generating solutions is 
normally generated randomly. The subsequent sets of generating solutions are generated 
using a random swapping method based on the results at the prior stage. Any solution y 
generated that is not dominated by its preceding solution x in the generating set is checked 
for Pareto dominance among solutions in a non-dominated set M. The newly generated 
solution is added to the non-dominated set if it is non-dominated. All solutions originally in 
the non-dominated set that are dominated by the added solution are removed from the non-
dominated set. PSA preserves some solutions based on a probability function P. The 
probability of preserving a new solution y in the generating set equals one when y 
dominates or is equal to the current solution x. Otherwise, 

 
1

( , , , ) min{1,exp( ( ( ) ( )) / )}
D

x x
j j j

j
P x y T f x f y Tλ

=

Λ = −∑  (8) 

where ( ) ( )j jf x f y−  is the change of the objective function values of objective j for solutions 
x and y, D is the number of objectives, T is the annealing temperature, and Λx is the 
weighting vector ( 1 2[ , ,..., ]x x x x

Dλ λ λΛ = ) used in the previous iteration for solution x. The 
weighting vector is used to assure dispersion of the generating solutions over the whole set 
of non-dominated solutions (i.e., the complete Pareto front). The higher the weight 
associated with a given objective, the lower the probability of accepting swappings that 
decrease the value on this objective and the greater is the probability of improving the value 
of this objective. For a given solution x ∈ S, the weights are changed in order to increase the 
probability of moving away from its closest neighbor in S denoted by x’. This is obtained by 
increasing the weights of the objectives with a factor of α (α > 1 and is a constant close to 1) 
on which x is better than x’ and decreasing the weights of the objective with a factor of 1/α 
on which x is worse than x’. The general scheme of PSA is shown in Algorithm 2. 
The PSA process is stopped when stop conditions are fulfilled. Several commonly used stop 
conditions include: 1) predetermined number of solutions (i.e., iterations) is generated and 
evaluated and 2) the accepting ratio of solutions falls below a threshold. When PSA stops, 
the non-dominated set M contains solutions that form the approximated Pareto front.  
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Select a starting set of generating solutions S 
FOR each solution x ∈ S DO 

Update the set M of potentially non-dominated solutions with x 
Set current temperature T to initial temperature T0 
 
REPEAT 

For each x ∈ S do 
Construct a feasible solution y 
IF y is not dominated by x THEN Update the set M with y 
Select the solution x’ ∈ S closest to x and non-dominated with respect to x 
IF there is no such x’ or it’s the 1st iteration with x THEN Set random weights such that 

0, ' ≥∀ x
jj λ and ∑ =

j

x
j 1'λ  

Else 
For each objective fj 

)'()(
)'()(

/
'

xfxf
xfxf

if
jj

jj
x
j

x
jx

j <
≥

⎪⎩

⎪
⎨
⎧

=
αλ

αλ
λ  

Normalize the weights such that ∑ =
j

x
j 1'λ  

Update x with y with acceptance probability P(x,y,T, Λx’) 
If the conditions of changing the temperature are fulfilled then 
Decrease T according to cooling schedule T(k) 

UNTIL the stop conditions are fulfilled 

Algorithm 2. The pseudo-code of the Pareto simulated annealing algorithm (Czyzak & 
Jaszkiewicz, 1998) 

3.4 Knowledge-informed pareto simulated annealing 
There are two complementary knowledge-informed PSA strategies for improving the 
performance of PSA in solving multi-objective spatial allocation problems (Duh & Brown, 
2007). First, similar to the single objective approach, auxiliary rules are used to preferentially 
generate subsequent solutions. Second, the Extended Initial Generating Set (EIGS) approach, 
which uses solutions optimized by single-objective simulated annealing as the initial 
solutions of PSA. This makes the initial generating set more diverse. The first strategy 
should result in an improvement in the effectiveness and efficiency of approximating the 
Pareto front. The second strategy, which extends the spread of the initial PSA generating set, 
is expected to encourage the diversity of Pareto solutions generated by PSA. 

4. Performance evaluations 
Multiple experiments were conducted to compare the performance of KISA against 
simulated annealing and Pareto simulated annealing in single and multi-objective spatial 
allocation problems. The allocation was carried out on a hypothetic 18 rows by 18 columns 
landscape (N = 324) with 50% of patch (i.e., foreground) cells (K = 162). K remained 
unchanged throughtout the simulation process. Quantitative performance indices were used 
for comparisons. 
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4.1 Single objective benchmark 
In single objective experiments,  ten random landscapes (K = 162) were used as initial maps. 
Each initial map was optimized ten times under each of four cooling schedules by simulated 
annealing (SA) and KISA with the compactness rule. The objective was to maximize PFF 
(see Section 2). Four cooling schedules used were: Boltzmann, Cauchy, Exponential, and 
Greedy. Their definitions are: 
Boltzmann (logarithmic) schedule: 

 0( )
ln
T

T k
k

= , 1k > . (9) 

Cauchy (modified logarithmic) schedule: 

 0( )
T

T k
k

= , 0k > . (10) 

Quenching (exponential) schedule: 

 0( ) exp(( 1) )T k T c k= − , c = 0.9966. (11) 

Greedy: 

 ( ) 0T k =  (12) 

In the equations above, T0 is the initial temperature and k is an index of annealing time, 
which was defined as the number of processed iterations. The initial temperature was 
determined to allow about 80% of the deteriorated solutions be accepted initially 
(Laarhoven, 1987). 
Two indices, Max Objective Function Value (MAXOFV) and Weighted Performance Index 
(WPI) (Duh & Brown, 2005), were respectively used to compare the effectiveness and 
efficiency between algorithms. MAXOFV is the best objecitve function value (OFV) ever 
achieved in each run. WPI is the average of weighted OFVs using a linearly decreasing 
weighting scheme, which gives more weight to the OFVs in the earlier stage of runs. These 
indices were calculated based on an arbitrary cutoff annealing time of 25000 iterations. 

4.2 Multi-objective benchmark 
For multi-objective experiments, the pattern metric, PFF, and two different cost surfaces, a 
uniform random and a conical surface (Fig. 2) were used as the objective functions. The 
random and conical cost surfaces exhibit low and high spatial autocorrelation of the 
distribution of cost, respectively. They were created as non-pattern objectives to contrast the 
PFF pattern objective. Costs are incurred when any location on the cost surface is occupied 
by a cell of the patch cover type. These objective functions formed two types of benchmark 
problems. The two types of problems represent the cases in which there are conflicting or 
concordant objectives. The first type (MOP1), maximizing PFF, which produces compact 
landscape, and minimizing the cost defined by the uniform random cost surface, which 
produces fragmented landscape, represents the case where the two optimization objectives 
are conflicting. The second type (MOP2), maximizing PFF and minimizing the cost defined 
by the conical cost surface, represents the case where the two objectives are concordant. 
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A B 

  
Fig. 2. Cost surfaces defined for multi-objective experiments: (A) uniform random and (B) 
conical (light color indicates higher costs if the location is occupied by patch cells). 

Ten different initial landscape maps were used as the initial input to the multi-objective 
Pareto optimization. Four simulated annealing algorithms were tested. They are Pareto 
simulated annealing (PSA), knowledge-informed PSA (KIPSA), PSA with extended initial 
generating set (EIGS), and knowledge-informed PSA with extended initial generating set 
(KIPSA+EIGS). The size of generating set was ten. The ten generating solutions were created 
by randomly shuffling the initial map. For the Extended Initial Generating Set algorithm, 
only eight out of ten initial maps were randomly generated. Two additional initial maps 
were created to optimize each of the individual objectives specified in the problems and 
added to the generating set. I used the standard Boltzmann cooling schedule with an initial 
annealing temperature of 0.01. The values of both objectives were rescaled to the range 0 to 
100 using their theoretical upper and lower bounds. Five repeated runs were conducted on 
each set of initial solutions, a total of 50 runs for each algorithm. 
Two indices, Average Rank Value (RANK) and Average Spread Value (SPREAD), were 
used to measure the effectiveness of algorithms.  RANK provides a relative comparison of 
the effectiveness of the algorithms for approximating the true Pareto front. It was calculated 
using the AARS method described earlier. The calculation first involved pooling the Pareto 
sets generated by different algorithms and assigning a Pareto ranking to every solution in 
the pool. The ranking values were then averaged for each algorithm to get the RANK index 
(i.e., average rank) of the corresponding algorithm. The closer the rank index value is to 1, 
the closer the corresponding Pareto set is to the true Pareto front. SPREAD is calculated 
based on the density evaluation scheme developed by Lu and Yen (2003). They calculated 
the density value by imposing a cell system, which is formed by partitioning the solution 
range of each objective into equally spaced cells, and counting the density of individual 
solutions within each cell. SPREAD is the quotient of the total number of solutions in a 
Pareto set and the average density value of the set. I randomly coupled individual runs of 
the four algorithms to create 50 combinations. Each of the 50 runs for a given algorithm was 
used exactly once. The two performance indices were calculated based on the 50 
combinations of runs. 

4.3 Random number generators 
The simulated annealing algorithms use a random number generator (RNG) to control the 
stochastic process of local search. The inherent biases of RNGs could affect the outcomes of 
stochastic experiments (Van Neil & Laffan, 2003). Therefore, the validity of stochastic 
experiments is reliant on the RNG used. I tested the RNGs on the single-objective spatial 
allocation problem using, in addition to the rnd function in Microsoft Visual Basic 
(Microsoft, 1999), three other RNGs: Mother of All (MOA) (Marsaglia, 1994), Ranshi 
(Gutbrod, 1995), and Taus (L'Ecuyer, 1996, 1999) and found no systematic biases in 
performance. The results presented in this chapter were all derived from simulations based 
on the Visual Basic rnd RNG. 
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5. Results 
A total of 800 runs were carried out in the single objective benchmark, 100 runs for each of 
the 8 combinations of the four cooling schedules and two algorithms. Both algorithms, 
simulated annealing (SA) and knowledge-informed simulated annealing (KISA), found 
near-optimal solutions (PFF > 0.94) and conspicuous sub-optimal solutions (PFF < 0.88) in 
some runs (Fig. 3). The average PFF at 25000 iterations was about 95% of the best PFF ever 
achieved at the maximal number of iterations (Table 1). The data confirm that most runs had 
converged at 25000 iterations and the use of 25000 iterations as the cutoff range for 
measuring MAXOFV and WPI was reasonable. KISA converged faster than SA in 
maximizing PFF (Fig. 4). When using the same cooling schedule, KISA performed better 
than SA, i.e., with higher MAXOFV values (Fig. 5a). The Boltzmann and the Exponential 
schedules were most effective but least efficient in generating the (near-)optimal solutions, 
whereas Cauchy and Greedy schedules, though more efficient in converging to optimal 
solutions, were not generating solutions as good as those generated using Boltzmann or 
Exponential schedules (Fig. 5b). The data suggest that using KISA with a Boltzmann or an 
Exponential cooling schedule is the most effective and efficient annealing setting for 
maximizing PFF. 
 

A B 

 
(0.94) 

 
(0.83) 

 
(0.96) 

 
(0.87) 

Fig. 3. Better and worse solutions and their PFF values (in parentheses) of maximizing PFF 
of patch class (dark color). These solutions are generated using (A) SA and (B) KISA. 

                     Algorithm 
Schedule SA KISA 

Boltzmann 0.892 (0.945) 0.939 (0.958) 
Cauchy 0.914 (0.914) 0.934 (0.956) 

Exponential 0.896 (0.934) 0.944 (0.957) 
Greedy 0.905 (0.917) 0.954 (0.958) 

Table 1. The averaged maximal PFF reached in 25,000 iterations versus the maximal PFF 
ever reached in 150,000 iterations (in parentheses). 

 
Fig. 4. Averaged OFV curves of maximizing PFF (showing only the solutions solved using 
the Boltzmann cooling schedule). 
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Fig. 5. Performance indices of maximizing PFF: (A) MAXOFV, (B) WPI. The error bars of ± 2 
standard errors of the mean are included. 

For multi-objective experiments, a total of 400 runs were carried out, 50 runs for each of the 
four algorithms in solving two types of multi-objective spatial allocation problems. The 
problems with conflicting objectives (i.e., MOP1) formed outstretched Pareto fronts (Fig. 6), 
while problems with concordant objectives (MOP2) formed compact Pareto fronts (Fig. 7). 
Approaches with extended initial generating set (i.e., EIGS and KIPSA+EIGS) have more 
outstretched Pareto fronts than those without EIGS (Fig. 6, 7). When look closely, in MOP1, 
KIPSA improved the approximations of the pattern objective but sacrificed by not exploiting 
the non-pattern objective (y-axis) as well as the PSA approach. Such sacrifices did not exist 
in MOP2 where the objectives were concordant. 
 

(a) PSA (b) EIGS (c) KIPSA (d) KIPSA+EIGS 

    
Rank: 2.4  Spread: 8.0 Rank: 3.1  Spread: 22.2 Rank: 2.3   Spread: 8.3 Rank: 2.5   Spread: 21.8 

Fig. 6. Approximated Pareto fronts (gray lines) and Pareto solutions (black dots) derived 
using 4 PSA algorithms for MOP1. The Pareto set in each scatter plot represents the outcome 
of one run. The x-axis is the OFV for maximizing PFF and y-axis is the OFV for minimizing 
cost on the uniform random cost surface. Numbers indicate the locations of individual 
solutions shown in Fig. 8. 
 

(a) PSA (b) EIGS (c) KIPSA (d) KIPSA+EIGS 

    
Rank: 4.0  Spread: 3.0 Rank: 1.3   Spread: 7.3 Rank: 2.0  Spread: 2.0 Rank: 1.8   Spread: 6.0 

Fig. 7. Approximated Pareto fronts (gray lines) and Pareto solutions (black dots) derived 
using 4 PSA algorithms for MOP2. The Pareto fronts are superimposed as visual references. 
The Pareto set in each scatter plot represents the outcome of one run. The x-axis is the OFV 
for maximizing PFF and y-axis is the OFV for minimizing cost on the conical cost surface. 
Numbers indicate the locations of individual solutions shown in Fig. 9. 
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1 2 3 4 5 6 7 8 

  
Fig. 8. Sample solutions of MOP1, each illustrates a particular combination of objective 
function values on a location indicated by a number shown in Fig. 6. These numbers do not 
connote that a solution was generated by a particular algorithm. 
 

1 2 3 4 5 6 

    
Fig. 9. Sample solutions of MOP2, each illustrates a particular combination of objective 
function values on a location indicated by a number shown in Fig. 7. These numbers do not 
connote that a solution was generated by a particular algorithm. 

Sampled solutions for MOP1 (Fig. 8) illustrate the versatility of Pareto simulated annealing 
in solving multi-objective spatial allocation problems with conflicting objectives. Each map, 
1 through 8, represents a (near-)optimal solution solved with different weightings of 
objectives in a single-objective optimization problem, with map 1 having a full weighting on 
maximizing PFF and with map 8 having a full weighting on minimizing the cost on the 
uniform random cost surface. The weighting on maximizing PFF diminishes from maps 1 to 
8. Sample solutions for MOP2 (Fig. 9) indicate that, despite the capability of Pareto 
simulated annealing of generating diverse Pareto solutions, the diversity is intrinsic to the 
multi-objective optimization problems. Problems with concordant objectives have less 
diverse Pareto solutions. 
The measures of performance indices reinforce and confirm the performance relationships 
alluded to above. Knowledge-informed algorithms (KIPSA and KIPSA+EIGS), in most 
cases, had significantly smaller average Pareto rankings (RANK) (Fig. 10a & 11a), indicating 
that KISA rule was more effective in generating Pareto solutions closer to the true Pareto 
front than PSA. However, knowledge-informed rules were not as effective in promoting 
diversity in Pareto solutions (Fig. 10b & 11b). The incorporation of EIGS greatly increased 
the spread of solutions (Fig. 10b & 11b). 
 

 
Fig. 10. Multi-objective performance indices for MOP1: (a) RANK, (b) SPREAD. The error 
bars of ±2 standard errors of the mean are included. 



 Simulated Annealing 

 

116 

 
Fig. 11. Multi-objective performance indices for MOP2: (a) RANK, (b) SPREAD. The error 
bars of ±2 standard errors of the mean are included. 

5. Discussion and conclusions 
This chapter presents a knowledge-informed simulated annealing (KISA) approach to 
improving the performance of solving single and multi-objective spatial allocation 
problems. Simulated annealing is flexible and versatile in dealing with complex pattern 
objective functions, and empirical results indicate that KISA further improved its 
performance, making the approach of combining auxiliary information and simulated 
annealing desirable for similar applications. In addition to the compactness objective 
characterized by the PFF metric, there are other pattern objectives, such as connectivity. 
Corresponding KISA rules for these pattern objectives need to be designed, implemented, 
and evaluated. 
The multi-objective benchmark shows that PSA algorithm is improved by various 
approaches, including using the KISA rule and extended initial generating sets (EIGS) 
strategy. The KISA rule improved the approximation of the Pareto front. EIGS greatly 
increased the diversity of Pareto solutions in problems with conflicting objectives. In these 
problems, efforts to approximate the Pareto front shifted toward the maximization of PFF 
when using the KISA rule, resulting in inferior approximations of the Pareto front toward 
the other objective, yet an overall improvement of the approximated Pareto front. One 
should use these strategies in multi-objective spatial optimization problems that emphasize 
pattern objectives. 
The performance comparison in multi-objective benchmark did not measure the 
improvements in computation time. There is no predictable relation between the number of 
solutions evaluated and the CPU-time consumed for the algorithms used. This was because 
I did not set a maximal size of the Pareto set, so as the number of solutions in the Pareto set 
increases the required computation time for checking Pareto dominance also increases. It 
turned out that the PSA approaches that generated more diverse Pareto solutions used more 
CPU time and problems with conflicting objectives required more time to solve. 
This research illustrates that knowledge-informed rules, which promote the formation of 
desirable pattern characteristics at an individual-cell level by acting through uncoordinated 
discrete steps, could eventually generate the desirable landscape patterns. Knowledge-
informed simulated annealing should have the same performance improvement for other 
pattern metrics that were not tested in this research if the associated rules are tailored to 
capture the desirable pattern characteristics. 
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1. Introduction 
Rectangle-packing problem involves many industrial applications. For example, in shipping 
industry, various size boxes have to be loaded as many as possible in a larger container. In 
wood or glass industries, rectangular components have to be cut from large sheets of 
material. In very large scale integration (VLSI) floor planning, various chips have to be laid 
on the chip board, and so on. The rectangle-packing problem belongs to a subset of classical 
cutting and packing problems and has shown to be NP hard (Leung et al., 1990). For more 
extensive and detailed descriptions of packing problem, please refer to Lodi et al. (2002) and 
Pisinger (2002). Various algorithms based on different strategies have been suggested to 
solve this problem. In general, these algorithms can be classified into two major categories: 
non-deterministic algorithms and deterministic algorithms. The key aspect of non-
deterministic algorithms, such as simulated annealing and genetic algorithm (Hopper & 
Turton, 1999; Bortfeldt, 2006), is to design data structure that can represent the topological 
relations among the rectangles. The key aspect of deterministic algorithms is to determine 
the packing rules, such as less flexibility first principle (Wu et al., 2002).  
Optimal algorithm for orthogonal two-dimensional cutting is proposed in Beasley (1985), 
but it might not be practical for large scale problems. In order to improve the quality of 
solution, some scholars combine genetic algorithm or simulated annealing with 
deterministic method and obtain hybrid algorithms (Liu & Teng, 1999; Leung et al., 2003). 
Some heuristic and meta-heuristic algorithms are also presented in literatures(Lodi et al., 
1999; Hopper & Turton, 2001; Zhang et al., 2005; Burke et al., 2004). In recent years, some 
people began to formalize the wisdom and experience of human being and obtain the quasi-
human heuristic algorithms (Huang & Jin, 1997; Huang & Xu, 1999; Wu et al., 2002; Huang et 
al., 2007). The “quasi-human” tries to simulate the behavior of human being in related 
special work such as bricklaying. 
Huang et al. (2007) presented a heuristic algorithm based on two important concepts, 
namely, the corner-occupying action and caving degree. Based on Huang et al. (2007), an 
efficient quasi-human heuristic algorithm (QHA) for solving rectangle-packing problem is 
proposed on the basis of the wisdom and experience of human being in this paper. The 
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objective is to maximize the area usage of the box. The key point of this algorithm is that the 
rectangle packed into the box always occupies a corner, even a cave, if possible. 
Furthermore, the rectangle should occupy as many corners and overlap as many edges with 
other previously packed rectangles as possible. In this way, the rectangles will be close to 
each other wisely, and the spare space is decreased. As compared with reviewed literatures, 
the results from QHA are much improved. For 21 rectangle-packing test instances taken 
from Hopper & Turton (2001), optimal solutions of 19 instances are achieved by QHA, and 
two, three and sixteen ones by the algorithm in Wu et al. (2002), Zhang et al. (2005) and 
Huang et al. (2007), respectively. For each of 13 random instances taken from Burke et al. 
(2004), the container height obtained by QHA is smaller than that by best fit (BF) heuristic 
(Burke et al., 2004). Furthermore, optimal solutions of three instances are achieved by QHA. 
Experimental results show that QHA is rather efficient for solving the rectangle-packing 
problem. 

2. Problem description 
Given an empty box B0 with width w0 and height h0, and a series of rectangles Ri with width 
wi and height hi (i=1, 2,…, n). The task is to pack as many rectangles into the box B0 as 
possible, where the measurement of “many” is the total area of the already packed 
rectangles. The constraints for packing rectangles are: 
1. Each edge of a packed rectangle should be parallel to an edge of the box. 
2. There is no overlapping area for any two already packed rectangles, and any packed 

rectangle should not exceed the box boundary. 
3. The rectangle should be packed horizontally or vertically. 
Without significant loss of generality, it is usual to assume that all wi and hi (i=0, 1,…, n) are 
integers. 

3. Algorithm description 
3.1. Main idea 
If some rectangles have been packed into the box without overlapping, that is, the 
overlapping area is zero, the question is which rectangle is the best candidate for the 
remainder, and which position is the best one to be filled. There is an aphorism in ancient 
China: “Golden corners, silvery edges, and strawy voids”. It means that the empty corner inside 
the box is the best place to be filled, then the boundary line of the empty space, and the void 
space is the worst. And more, if the rectangle not only occupies a corner, but also touches 
some other rectangles, the action for packing this rectangle is perfect. We may call the 
corresponding action as cave-occupying action. Therefore, we can develop foresaid 
aphorism into “Golden corners, silvery edges, strawy voids, and highly valuable diamond cave”. In 
addition, we hope that the rectangle occupies as many corners and overlaps as many edges 
with previously packed rectangles as possible. Thus, the following packing principle is 
natural: The rectangle to be packed into the box always occupies a corner, and the caving 
degree of the packing action should be as large as possible, where the caving degree reflects 
the closeness between the rectangle to be packed and the previously packed rectangles, the 
details about caving degree will be described in 3.2(6). Furthermore, the rectangle should 
occupy as many corners and overlap as many edges with other previously packed 
rectangles as possible. Thus, the rectangles are close to each other wisely. Actually, this 
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strategy describes a quasi-human idea, that is, to simulate the behavior of human being in 
related special work such as bricklaying. 

3.2. Definitions 
The concepts of corner-occupying action, cave-occupying action and caving degree are 
presented in Huang et al. (2007). We summarize them in this paper again. For more details, 
the readers are referred to Huang et al. (2007). In this paper, other two important concepts, 
i.e., corner degree and edge degree, are presented. 
(1) Corner-occupying action (COA) 
A packing action is called a corner-occupying action (COA), if the edges of the rectangle to be 
packed overlap the different directional edges with other two previously packed rectangles 
including the box (we can regard the 4 edges of the box as 4 rectangles with very small 
height which have been packed at the prespecified positions), and the overlapping lengths 
are longer than zero. Note that the two rectangles are not necessarily touching each other. A 
COA is called a feasible one, if the rectangle to be packed does not overlap with any 
previously packed rectangle, i.e., the overlapping area is zero, and does not exceed the box 
boundary. For example, in Fig. 1, the shadowed rectangles have been packed, and the 
rectangle “1” is outside the box. The packing action is a feasible COA, if rectangle “1” is 
situated at place A, B, C or D; it is a non-feasible COA if situated at place E or F; it is not a 
COA if situated at place G or H. 
(2) Cave-occupying action  
A packing action is called a cave-occupying action if the rectangle to be packed not only 
occupies a corner, but also touches some other previously packed rectangles including the 
box. For example, in Fig. 2, the shadowy rectangles have been packed. Rectangle A occupies 
the corner formed by rectangles a and b. Furthermore, it touches rectangle c. Thus, rectangle 
A occupies a cave formed by rectangles a, b and c. The action of packing rectangle A is a 
cave-occupying action. Actually, a cave-occupying action is a special COA. 
 

         
          Fig. 1 Corner-occupying action                              Fig. 2 Cave-occupying action 

(3) Configuration 
Fig. 3 shows a configuration. Some rectangles have been packed into the box without 
overlapping area and some remain outside. A configuration is called an initial one if there is 
no rectangle in the box. A configuration is called an end one if all n rectangles have been 
packed into the box without overlapping area or, no feasible COA can be done although 
some rectangles remain outside.  
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Fig. 3 Configuration 

(4) Distance between two rectangles 
For two given rectangles Ri with width wi and height hi and Rj with width wj and height hj, 
the central coordinate of rectangle Ri and Rj is (xi, yi) and (xj, yj), respectively. These two 
rectangles do not overlap (i.e., the overlapping area is zero) if ( )1

2i j i j
x x w w− ≥ +  or 

( )1

2i j i j
y y h h− ≥ + , and more, the distance dij between rectangle Ri and Rj is defined as 

follows: 

( )( ) ( )( )1 1
2 2

max , 0 max , 0ij i j i j i j i jd x x w w y y h h= − − + + − − + . 

In fact, dij is the Manhattan distance between two rectangles which is an extension of 
Manhattan distance between two points. 
(5) Distance between one rectangle and several other rectangles 
For a given rectangle R and a set of rectangles {Ri| i=1, 2,…, m}. Let the distance between R 
and Ri (i=1, 2,…, m) be di. The minimum of di (i=1, 2,…, m) is defined as the distance between 
rectangle R and m rectangles R1, R2,…, Rm. 
(6) Caving degree of COA 
As shown in Fig. 4, if a rectangle Ri is packed into the box according to a feasible COA, let 
the distance between rectangle Ri and all the previously packed rectangles including the box 
(except the rectangles a and b those form this corner) be dmin. The caving degree Ci of the 
corresponding COA is defined as follows: 
 

 
Fig. 4. Caving degree of COA. 

min1i

i i

d
C

w h
= −

⋅
, 

where wi and hi is the width and height of Ri respectively. The caving degree reflects the 
closeness between the rectangle to be packed and the previously packed rectangles 
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including the box (except the rectangles that form this corner). It is equal to 1 when the 
corresponding rectangle occupies a cave formed by three or more previously packed 
rectangles, and less than 1 when just occupies a corner formed by two previously packed 
rectangles. 
 (7) Corner degree of COA 
For a given COA, the number of corners occupied by the related rectangle is defined as 
corner degree of the corresponding COA. For example, as shown in Fig. 5, the shadowy 
rectangles have been packed. If rectangle “1” is situated at place A, it occupies the corner 
formed by rectangles a and b. Then, the corner degree of the corresponding COA equals 1. If 
situated at place B, it occupies two corners. One is formed by rectangle b and the bottom 
boundary and, the other is formed by rectangle c and the bottom boundary. Thus, the corner 
degree of the corresponding COA equals 2. If situated at place C, it occupies 4 corners which 
are formed by rectangle d and e, d and f, e and right boundary, f and right boundary. In this 
situation, the corner degree of the corresponding COA becomes 4. 
(8) Edge degree of COA 
For a given COA, the number of edges that overlap with the related rectangle is defined as 
edge degree of the corresponding COA. For example, as shown in Fig. 6, the shadowy 
rectangles have been packed. If rectangle “1” is situated at place A, since it overlaps the left 
and top boundary and one edge of rectangle a, the edge degree of the corresponding COA 
equals 3. If situated at place B, the edge degree of the corresponding COA equals 2 for 
overlapping one edge of rectangle b and c, respectively. If situated at place C, the edge 
degree of the corresponding COA equals 5 for overlapping the bottom boundary and one 
edge of rectangle c, d, e and f, respectively. 
 

                           

               Fig. 5. Corner degree                                                       Fig. 6. Edge degree 

(9) Precedence of point 
Let P1 (x1, y1) and P2 (x2, y2) be two points in the plane rectangular coordinates o-xy. P1 has 
precedence over P2 if x1< x2, or if x1= x2 and y1< y2. 

3.3. Sketch of the algorithm 
At each step, do the COA with the largest caving degree (if there are more than one COA 
with the largest caving degree, do the COA with the largest corner degree, if there are still 
multiple choices, do the COA with the largest edge degree) until no rectangle is left outside 
the box or no feasible COA can be done according to the current configuration.  
In fact, this describes a greedy packing process. On the basis of greedy packing process, we 
introduce backtracking process, and so, develop the greedy packing algorithm into a new 
algorithm which can achieve better solution than greedy packing algorithm.  
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4. Computing program 
4.1. Selecting rule 
Rule 1. Select the COA with the largest caving degree, if there is more than one COA 

satisfying the condition, then: 
Rule 2. Select the COA with the largest corner degree based on rule 1, if there is more than 

one COA satisfying the condition, then: 
Rule 3. Select the COA with the largest edge degree on the basis of rule 2, if there is more 

than one COA satisfying the condition, then: 
Rule 4. Select the COA with the highest precedence of the left-bottom vertex of the 

corresponding rectangle, if there is more than one COA satisfying the condition, then: 
Rule 5. Select the COA with the corresponding rectangle packed with the longer sides 

horizontal if both the horizontal and vertical packings are feasible, if there is more than 
one COA satisfying the condition, then: 

Rule 5. Select the COA with the smallest index of the corresponding rectangle. 

4.2. Basic program 
Step 1. If there is no feasible COA under the current configuration, output the unpacked 

area and stop the program. Otherwise, enumerate all feasible COAs, and then calculate 
the caving degree, corner degree and edge degree for each COA. 

Step 2. Select a COA according to the selecting rule (see section 4.1) and pack the 
corresponding rectangle. Then reach a new configuration. 

Step 3. If all rectangles have been packed into the box, output the packing result and stop 
successfully. Otherwise, return to step 1.  

4.3. Strengthened program 
Step 1. If there is no feasible COA under the current configuration, stop the program. 

Otherwise, enumerate all feasible COAs as candidates.  
Step 2. For each candidate COA, pseudo-pack (“pseudo-pack” means to pack the rectangle 

into the box temporarily which will be removed from the box in the future) the 
corresponding rectangle and reach a new configuration. Based on this new 
configuration, pseudo-pack the remainder rectangles according to the basic program. If 
all rectangles have already been packed, output the packing result and stop 
successfully. Otherwise, calculate the area usage of the box according to the tentative 
end configuration as the score of the corresponding candidate COA.  

Step 3. Select the COA with the highest score and pack the corresponding rectangle. Then 
reach a new configuration and return to step 1. If there are multiple COAs with the 
highest score, go to step 4. 

Step 4. Select the COA according to the selecting rule (see section 4.1) and pack the 
corresponding rectangle. Then reach a new configuration and return to step 1. 

4.4. Computational complexity 
As each iteration of packing will occupy one or more corners and generate some new 
corners.The number of corners left should be proportional to 2n . Therefore, for each 
rectangle to be packed, the number of COAs generated will be bounded by 3( )O n . For basic 
program, the process is repeated once for each rectangle packed. As a result, the worst-case 
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time complexity of basic program will be 3 4( ) ( )O n n O n× = . For strengthened program, the 
basic program is repeated 3( )O n  times for each rectangle packed. So the worst-case time 
complexity of strengthened program will be 4 3 8( ) ( )O n n n O n× × = . It should be noted that the 
time complexity of our algorithm is polynomial and relative small compared with the 
exponential time complexity of the original problem. 

5. Experimental results 
Two group benchmarks taken from Hopper & Turton (2001) and Burke et al. (2004) are used 
to test the performance of the algorithm proposed in this paper. The first group has 21 
instances with the number of rectangles ranging from 16 to 197. The second group includes 
13 instances with the number of rectangles ranging from 10 to 3152. The optimal solutions of 
these two groups are known. 

5.1 21 rectangle-packing instances provided by Hopper and Turton 
The performance of QHA has been tested with 21 rectangle-packing test instances taken 
from Hopper & Turton (2001). For each instance, the optimal solution is perfect, i.e., all 
rectangles can be packed into the box without overlapping area, the area usage of the box is 
100%, and the unutilized area is zero. For more details about these instances, please refer to 
Hopper & Turton (2001). 
Wu et al. (2002), Hopper & Turton (2001), Zhang et al. (2005) and Huang et al. (2007) reflect 
the most advanced algorithms that have already been published up to now. Heuristic1 (Wu 
et al., 2002) is based on the conception of flexibility; SA+BLF (Hopper & Turton, 2001) means 
simulated annealing+bottom left fill, GA+BLF (Hopper & Turton, 2001) means genetic 
algorithm+bottom left fill; hybrid heuristic (HH) (Zhang et al., 2005) is based on divide-and-
conquer; and heuristic for rectangle packing (HRP) (Huang et al., 2007) is based on corner-
occupying action and caving degree. Heuristic1, SA+BLF, GA+BLF, HH and HRP are not 
implemented in this paper, so the results are directly taken from Wu et al. (2002), Hopper & 
Turton (2001), Zhang et al. (2005) and Huang et al. (2007). Heuristic1 is run on a SUN 
Sparc20/71 with a 71MHz SuperSparc CPU and 64MB RAM; SA+BLF and GA+BLF are run 
on a Pentium pro with a 200MHz processor and 65MB RAM; HH is run on a Dell GX260 
with a 2.4GHz CPU; QHA and HRP are run on IBM notebook PC with a 2.0GHz processor 
and 256MB memory. As an example, the packing results of instances 2, 5, 8, 14, 17 and 20 
achieved by QHA are shown in Fig. 7. 
For 21 rectangle-packing test instances, optimal solutions of 19 ones are achieved by QHA, 
i.e., all rectangles are packed into the box without overlapping area, the area usage of the 
box is 100%, and percent (%) of unpacked area, which is defined by 100(box area - total area of 
already packed rectangles)/box area, is 0%. And optimal solutions of 2, 3 and 16 ones are 
achieved by heuristic1, HH and HRP, respectively. The comparisons of the results of 21 
instances between HRP, heuristic1, HH and QHA are listed in table 1. From table 1, we see 
that the runtime of QHA on some larger instances is shorter than that on some smaller 
instances because the program stops successfully when all rectangles are packed into the 
box without overlapping. As a result, it is natural that the runtime of QHA on instance 20 is 
much shorter than that on instance 19 and 21, as shown in table 1. 
The original problem can be equivalently described as to minimize the container height 
under packing all rectangles without overlapping into a fixed width rectangular container. 
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This is so-called strip packing. In this paper, the minimal container height is calculated by 
QHA for each of 21 instances. The optimal solutions of all 21 ones except instances 19 and 21 
are achieved by QHA. The best solution (i.e., the minimal box height) of instance 19 and 21 
achieved by QHA is listed in table 2. Comparisons of the relative distance of the best 
solution to optimal solution (%) which is defined by 100(best solution - optimal 
solution)/optimal solution and the runtime (min) between SA+BLF (Hopper & Turton, 2001), 
GA+BLF (Hopper & Turton, 2001) and QHA are listed in table 3, where the relative distance 
and runtime is the average value of three instances, as shown in table 3. 
 

Instance 17, # of rectangles: 97
Box dimension: 80x120

Instance 20, # of rectangles: 197
Box dimension: 160x240

Instance 5, # of rectangles: 25
Box dimension: 40x15

Instance 8, # of rectangles: 29
Box dimension: 60x30

Instance 14, # of rectangles: 73
Box dimension: 60x90

Instance 2, # of rectangles: 17
Box dimension: 20x20

 
Fig. 7. The packing results of instances 2, 5, 8, 14, 17 and 20 

5.2 13 random instances provided by Burke et al 
We also use 13 random instances1 provided by Burke et al. (2004) to test our algorithm. The 
comparisons of the box height and runtime between BF heuristic (Burke et al., 2004) and 
QHA are listed in table 4. For these 13 instances, optimal solutions of 3 ones are achieved by 
QHA, but none of them by BF heuristic. For each of the 13 instances, the container height 
obtained by QHA is smaller than that by BF heuristic, as shown in columns 4 and 6 of table 
4. From table 4, we can see that the integrated performance of QHA is also rather satisfying 
for random instances. As an example, the packing result of instance N13 is shown in Fig. 8. 

6. Conclusion 
In this paper, an efficient quasi-human heuristic algorithm (QHA) for solving rectangle-
packing problem is proposed. High area usage of the box can be obtained by this algorithm. 
Optimal solutions of 19 of 21 test instances taken from Hopper & Turton (2001) and 3 of 13 
instances taken from Burke et al. (2004) are achieved by QHA. The experimental results 
demonstrate that QHA is rather efficient for solving the rectangle-packing problem. 
We guess the quasi-human approach will be fruitful for solving other NP-hard problems. 

                                                 
1 The 13th instance N13 is generated on the basis of the 20th instance in Hopper & Turton 
(2001). 
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QHA HRP (Huang et 
al., 2007) 

heuristic1 (Wu et 
al., 2002) 

HH (Zhang et al., 
2005) 
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% of 
unpacked 

area 

Runtime 
(sec) 

1 16 20 x 20 0 0.02 0 0.05 2 1.48 2 0 

2 17 20 x 20 0 0.22 0 0.23 2 2.42 3.5 0 

3 16 20 x 20 0 0.04 0 1.12 2.5 2.63 0 0 

4 25 40 x 15 0 0.3 0 0.08 0.67 13.35 0.67 0.05 

5 25 40 x 15 0 0.09 0 0.1 0 10.88 0 0.05 

6 25 40 x 15 0 0.05 0 0.28 0 7.92 0 0 

7 28 60 x 30 0 1.16 0 2.58 0.67 23.72 0.67 0.05 

8 29 60 x 30 0 7.77 0 4.19 0.83 34.02 2.44 0.05 

9 28 60 x 30 0 2.51 0 2.5 0.78 30.97 1.56 0.05 

10 49 60 x 60 0 265.58 0 327.12 0.97 438.18 1.36 0.44 

11 49 60 x 60 0 20.13 0 36.59 0.22 354.47 0.78 0.44 

12 49 60 x 60 0 20.78 0 135.6 No 
report 

No 
report 0.44 0.33 

13 73 60 x 90 0 72.09 0 55.44 0.3 1417.52 0.44 1.54 

14 73 60 x 90 0 5.25 0 29.17 0.04 1507.52 0.44 1.81 

15 73 60 x 90 0 38.34 0 51.13 0.83 1466.15 0.37 2.25 

16 97 80 x 120 0 1610 0.15 873.38 0.25 7005.73 0.66 5.16 

17 97 80 x 120 0 86.29 0 327.61 3.74 5537.88 0.26 5.33 

18 97 80 x 120 0 490.81 0.06 577.59 0.54 5604.7 0.5 5.6 

19 196 160 x 240 0.04 8303.13 0.24 4276.82 No 
report 

No 
report 1.25 94.62 

20 197 160 x 240 0 1520.27 0.12 3038.6 No 
report 

No 
report 0.55 87.25 

21 196 160 x 240 0.13 9288.21 0.16 3980.65 No 
report 

No 
report 0.69 78.02 

 

Table 1. Experimental results of 21 instances provided by Hopper & Turton (2001) on HRP, 
heuristic1, HH and QHA 
 

Instance # of rectangles Box width Optimal 
solution Best solution Runtime(sec) 

19 196 160 240 241 8304.89 
21 196 160 240 241 9291.44 

Table 2. The best solution of instance 19 and 21 under packing all rectangles into the box 
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Instance 1, 2, 3 4, 5, 6 7, 8, 9 10, 11, 12 13, 14, 15 16, 17, 18 19, 20, 21 
QHA 

(Relative distance, %/ runtime, 
min) 

0/<0.01 0/<0.01 0/0.06 0/1.70 0/0.64 0/12.15 0.28/ 
106.20 

SA+BLF (Hopper & Turton, 
2001) 

(Relative distance, %/ runtime, 
min) 

4/0.7 6/2.4 5/4 3/33 3/115 3/382 4/4181 

GA+BLF (Hopper & Turton, 
2001) 

(Relative distance, %/ runtime, 
min) 

4/1 7/2 5/3 3/13 4/36 4/86 5/777 

Table 3. Comparisons of the relative distance of best solution to optimal solution (%) and the 
runtime (min) between SA+BLF, GA+BLF and QHA  
 

BF heuristic (Burke et al., 
2004) QHA 

Instance # of 
rectangles 

Optimal 
height 

Box height Runtime (sec) Box 
height 

Runtime 
(sec) 

N1 10 40 45 <0.01 40 0.17 
N2 20 50 53 <0.01 50 1.73 
N3 30 50 52 <0.01 50 2.91 
N4 40 80 83 <0.01 81 105.53 
N5 50 100 105 0.01 102 134.04 
N6 60 100 103 0.01 101 137.92 
N7 70 100 107 0.01 101 423.73 
N8 80 80 84 0.01 81 865.96 
N9 100 150 152 0.01 151 1242.77 

N10 200 150 152 0.02 151 7912.36 
N11 300 150 152 0.03 151 1.5 x 104 
N12 500 300 306 0.06 303 4.4 x 104 
N13 3152 960 964 1.37 962 5.2 x 105 

Table 4. Comparisons of the box height and runtime between BF heuristic and QHA 
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Fig. 8. The packing result of instance N13 by QHA 
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1. Introduction 
The R & D activities to realize systems which provide road traffic information and route 
guidance have been conducted as core systems of Intelligent Transport Systems (ITS). 
However, the implementation of these systems will have less effect on freight transport 
unless logistics operation is rationalized in parallel to the development of ITS. On the other 
hand, according to the expansion of internet, information has been exchanged with 
extremely high speed and low cost. Nevertheless, goods must be moved in the real space. E-
commerce has caused the increase of door-to-door deliveries. The demands for high-quality 
delivery services such as small-amount high frequency deliveries with time windows have 
been made by many clients (including companies and individuals). The loading rate of 
trucks has decreased and the rate of freight transportation in total road traffic has increased. 
The rationalization in terms of increasing the loading rate and decreasing the total travel 
time is aimed not only for reducing operational costs in each freight carrier but also for 
relieving traffic congestion, saving energy and reducing the amount of CO2. Freight 
transportation in urban areas that is described above is called city logistics (Taniguchi et al. 
2001). 
Many researches on routing problems have been appeared in the literature. Comprehensive 
and detailed explanations of theoretical models and solutions of them are given by Toth & 
Vigo (Toth & Vigo, 2002).  On the other hand, in the context of city logistics, real routing 
problems should not be based under the assumption on the symmetry of the link costs of 
visiting customer j after customer i or customer i after customer j, pij=pji, and other related 
mathematical properties, as triangular property etc. This is due to the fact that in an urban 
environment routes using the streets have to account for one way streets, issues related to 
regulations at intersections. In addition, travel time might vary according to traffic 
conditions, that is to say, it might be time dependent. Moreover, in urban road networks, 
demands might be located on not only spots on streets but also streets themselves. This 
chapter is aimed for describing the original solution, which has been invented by the 
authors of this chapter, to routing problems in city logistics.  
At the beginning of this chapter, a variety of routing problems will be introduced and 
followed by the explanation of features of routing problems in city logistics. And then, a 
practical solution method, which is composed of a data model, transformation rules of a 
solution on the data model and an overall algorithm using Simulated Annealing for solving 
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a variety of routing problems in city logistics, is proposed in this chapter. Evaluation of the 
proposed method is conducted by comparisons on computational results with those derived 
from other heuristics.  

2. Typical routing problems in city logistics  
Typical routing problems are abstracted from actual logistics operations in urban areas and 
formalized as mathematical problems. They are categorized as the combinatorial 
optimization problems.  In this section, according to the type of the place that demand 
belongs, three problems are distinguished. They are introduced as follows.  

2.1 Vehicle Routing Problem (VRP) 
The Vehicle Routing Problem (VRP) is the most popular problem in routing problems. It 
involves the design of a set of minimum cost vehicle trips, originating and ending at a 
depot, for a fleet of vehicles with loading capacity that services a set of client spots with 
required demands. The problems studied in this chapter can be described in the style used 
by Crescenzi & Kann (Crescenzi & Kann, 2000) for their compendium of NP optimization 
problems. Although VRP is not listed in the compendium, it is given by Prins & Bouchenoua 
(Prins & Bouchenoua, 2004) as follows.  
• INSTANCE:  Complete undirected graph G = (V,E), initial vertex s ∈V, vehicle capacity 

W ∈ IN, length c(e) ∈ IN for each e ∈ E, demand q(i) ∈ IN for each i ∈V . 
• SOLUTION:  A set of cycles (trips), each containing the initial vertex s, that collectively 

traverses every node at least once. A node must be serviced by one single trip and the 
total demand processed by any trip cannot exceed W. 

• MEASURE:  The total cost of the trips, to be minimized. The cost of a trip is the sum of 
its traversed edges. 

 

 
Fig. 1. Vehicle Routing Problem (VRP) 

Although the VRP in a narrow sense is defined above, the VRP in a broader sense includes 
the more comprehensive class of routing problems related to various conditions in which 
demands are located on nodes. It includes VRP with time windows imposed by clients, VRP 
with multiple depots, periodic VRP and etc. In this case, the simplest VRP defined above is 
called capacitated VRP (CVRP). 
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2.2 Capacitated Arc Routing Problem (CARP) 
When people observe deliveries in urban area, it is understood that some delivery or pickup 
demands belong not to spots but to streets. This circumstance contains the case where the 
demands are densely located along a street such as postal deliveries, and the case where the 
demand belongs to a street itself such as garbage collections and snow removals. In these 
cases, they are more suitable to be formulated as the Capacitated Arc Routing Problem 
(CARP) rather than as VRP. CARP was introduced by Golden & Wong (Golden & Wong, 
1981). It consists of determining a set of vehicle trips at minimum total cost, such that each 
trip starts and ends at a depot, each required undirected edge is serviced by one single trip, 
and the total demand handled by any vehicle does not exceed its loading capacity. The 
definition of CARP is also given by Prins & Bouchenoua in the Crescenzi & Kann’s style. 
• INSTANCE: Undirected graph G = (V,E), initial vertex s ∈V, vehicle capacity W ∈ IN, 

subset ER ⊆ E, length c(e) ∈ IN and demand q(e) ∈ IN for each edge e ∈ ER. 
• SOLUTION: A set of cycles (trips), each containing the initial vertex s, that collectively 

traverses each edge of ER at least once. Each edge of ER must be serviced by one single 
trip and the total demand processed by any trip cannot exceed W. 

• MEASURE: The total cost of the trips, to be minimized. The cost of a trip comprises the 
costs of its traversed edges, serviced or not. 

However, when the actual city logistics is considered, the original CARP is merely able to 
express arc routing operations in the real world imperfectly. To take waste collection as an 
example, there are many one-way streets in urban areas. Besides, even in two-way streets, 
vehicles often collect waste along one side of the street only, because broad streets are often 
split by central reservations. Therefore, the extended CARP introduced by Lacomme et al. 
(Lacomme et al., 2001) that takes account of both undirected edges and directed arcs is dealt 
with in this chapter.  
 

 
Fig. 2. The Extended Capacitated Arc Routing Problem (The Extended CARP)  

2.3 General Routing Problem with Nodes, Edges, and Arcs (NEARP) 
To take waste collection as an example of city logistics, there are some punctual dumps 
(such as factories, schools, and hospitals) that put out a large amount of waste, while other 
small waste dumps along a street are considered as the grouped arc demand. In order to fit 
the model more closely to the routing situations in the real world, Prins & Bouchenoua 
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defined a general routing problem with nodes, edges, and arcs (NEARP) that handles 
demands which belong to any of nodes, (undirected) edges and (directed) arcs (Prins & 
Bouchenoua, 2004). 
• INSTANCE: Mixed graph G = (V, E, A), initial vertex s ∈V , vehicle capacity W ∈ IN, 

subset VR ⊆ V , subset ER ⊆ E, subset AR ⊆ A, traversal cost c(u) ∈ IN for each “entity” u 
∈ V ∪ E ∪A, demand q(u) ∈ IN and processing cost p(u) ∈ IN for each required entity 

(task) u ∈ VR ∪ ER ∪ AR. 
• SOLUTION: A set of cycles (trips), each containing the initial vertex s, that may traverse 

each entity any number of times but process each task exactly once. The total demand 
processed by any trip cannot exceed W. 

• MEASURE: The total cost of the trips, to be minimized. The cost of a trip comprises the 
processing costs of its serviced tasks and the traversal costs of the entities used for 
connecting these tasks. 

 

 
Fig. 3. Node, Edge and Arc Routing Problem (NEARP) 

3. Precedent studies on heuristics for routing problems 
The VRP belongs to NP-hard problems. Even concerning the simple VRP, exact methods are 
not fit for large problems. Therefore, heuristics have been important in the application of the 
VRP. Before the proposed method will be explained, precedent studies on heuristics for VRP 
are introduced briefly. The heuristics for solving routing problems are classified into two 
major classes (Toth & Vigo, 2002). One is the family of classical heuristics and the other is 
the family of metaheuristics including Simulated Annealing. 

3.1 Classical heuristics for VRP 
The heuristics belong to the first class have been specially invented for solving routing 
problems. They utilize the proper characteristics of routing problems. They are called 
classical heuristics. They are further classified into three types.  
The first one is the type of constructive heuristics that produce vehicle routes by merging 
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Chistofides, Mingozzi & Toth Insertion Heuristic (Chistofides et al., 1979) also belongs to 
this subtype.  
The second one is the type of two-phase heuristics. Most of them assign nodes with 
demands to vehicles in the first phase, and then decide routing order of nodes for each 
vehicle in the second phase. These are called cluster-first, route-second methods.  Fisher & 
Jaikumar Algorithm (Fisher & Jaikumar, 1981) is the typical method which belongs to this 
type. The optimization in the second phase which is applied to the result of optimization in 
the first phase is not guaranteed to derive global optimum. There are also route-first cluster-
second methods which produce a giant tour including entire nodes in the first phase, and 
then cut and divide into vehicle routes in the second phase. 
The last one is the type of improvement heuristics which make changes in one vehicle route 
or between several vehicle routes. Lin & Kernighan (Lin & Kernighan, 1973) method is the 
typical method which belongs to this type. Many methods of this type are based on λ-opt 
mechanism in which λ edges connecting nodes are exchanged in routes.  

3.2 Metaheuristics for VRP 
Metaheuristics have been introduced into the solutions for VRP in the last two decades. 
Because metaheuristics are generally recognized to fit combinatorial optimizations, 
Simulated Annealing (SA), Tabu Search (TS), Genetic Algorithm (GA) and Ant Colony 
Optimization (ACO) have been tried to apply to VRP.  
Among the methods incorporating TS, Taburoute algorithm of Gendreau et al., (Gendreau 
et al., 1994) has had an established reputation.  In each repetition in the method, one node is 
deleted from a vehicle route and inserted into the best position in other routes. 
Among the methods incorporating GA, the method proposed by Prins (Prins, 2001) is 
reported to get good results. It adopts a hybrid strategy that consists of GA procedure in the 
giant tour without route delimiters, and local search procedures carried out in a route or 
between two vehicle routes.  
With respect to ACO, not so many works on VRP are appeared in the literature.  
Among VRP solutions using SA, the method proposed by Osman (Osman, 1993) is popular. In 
its main procedure, one node or two nodes are exchanged between existing two vehicle routes. 
The move of one node or two nodes from one vehicle route to another is also allowed. 
In a comprehensive survey on metaheuristics for VRP given by Gendreau et al. (Gendreau et 
al., 2002), it is described that the methods based on TS are the most effective. It is also said 
that existing methods based on SA are not competitive with TS; while those based on GA 
and ACO have possibility to be competitive in future studies because they have not been 
fully exploited. 
Most of the procedures for solving the extended routing problems are developed by making 
use of the procedures for VRP. 

4. Data model and generating neighbours in searching process of the 
proposed method for VRP 
Although some precedent methods based on metaheuristics mentioned above show good 
performance, their procedures are considerably complex. In particular, the local search 
procedures incorporated into them are rather complicated. The original solution of VRP 
which is composed of a simpler data model and a one phase algorithm, incorporated with 
original methods of generating neighbours, has been proposed by the authors of this 
chapter. 
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4.1 Data model for VRP 
The model to express a state of solution of VRP is realized as a sequence of integers, i.e., a 
string. In the string, the position of a number, which is a symbol of the node with demand, 
implies not only which vehicle tours the node but also the routing order of it. An example of 
the string model is illustrated in Fig.4. In the string, a node with demand is expressed by a 
positive number. The special number ‘0’ should be interpreted not only as the depot but also 
as the delimiter which partitions the trips. If the number of vehicles is denoted by m, (m−1) 
‘0’s are provided in the string. If there is no number between ‘0’ and ‘0’, the relevant vehicle 
is not in use.  
 

 
Fig. 4. Proposed Data Model for VRP 

This data model is coincidentally similar to that invented for the solution based on a kind of 
GA. It was introduced by Gendreau et al. (Gendreau et al. 2002) as the original idea was 
given by Van Breedam (Van Breedam, 1996). However, the proposed transformation rules in 
this chapter based on the data model are quite different from those of precedent methods as 
they will be described in the following section. 

4.2 Transformation rules for generating neighbors 
In a repetition in the proposed procedure, a new state of solution is generated from the 
present state by one of the following three types of transformation rules for generating 
neighbours. The first rule is to exchange a number with another one in the string. The 
second rule is to delete an arbitrary number and then insert it to another position in the 
string. The third rule is that after a part of the string is taken out temporally, the direction of 
the partial string is reversed, and then embedded in the place where the string is taken out. 
These three transformation rules are illustrated in Fig. 5.  
Note that the rules are also applied to the special number ‘0’ in the string data model 
illustrated in Fig.4. In other words, ‘0’ is treated impartially with other numbers.  
If ‘one-to-one exchange’ is executed within a substring partitioned by ‘0’, only a vehicle 
route is changed. An example of the case is illustrated in Fig. 6. If ‘one-to-one exchange’ is 
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executed between two non-zeros striding over ‘0’, two tasks are exchanged between two 
vehicle routes. An example of this case is illustrated in Fig. 7. If ‘one-to-one exchange’ is 
executed between a non-zero number and ‘0’, two vehicle routes are merged, while another 
vehicle route is divided into two vehicle routes. An example is illustrated in Fig. 8. 
 

 
Fig. 5. Three Transformation Rules for Generating Neighbours 
 

 
Fig. 6. A Result of ‘One-to-One Exchange’ within a Vehicle Route 
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Fig. 7. A Result of ‘One-to-One Exchange’ between Two Non-Zeros Striding over ‘0’ 

When the second transformations rule ‘delete and insert’ is applied, several different cases 
also arise. If a non-zero number is deleted and inserted at ‘0’, a task is moved to another 
vehicle route. An example is illustrated in Fig. 9. 
When the third transformations rule ‘partial reversal’ is applied, several different cases also 
arise. If a substring including ‘0’ is reversed, the relevant plural vehicle routes are changed. 
An example is illustrated in Fig.10. 
These transformation rules were originally presented by the authors of this chapter 
(Kokubugata et al., 1997). 
 
 

 
 

Fig. 8. A Result of ‘One-to-One Exchange’ between Non-Zero and ‘0’ 
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Fig. 9. A Result of Deleting Non-Zero and Inserting It at ‘0’ 

4.3 Objective function 
The objective of the VRP is the minimization of total cost which is subject to constraints 
including the loading capacity of each vehicle. The objective function of the VRP is 
formulated as follows. 
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Fig. 10. A Result of ‘Partial Reversal’ Striding over ‘0’ 
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where s = (s1, s2, · · · , sn) is a string that consists of the nodes with demands and a depot; s0 
and sn+1 are the implicit expressions of the depot omitted in the string s; ck is the servicing 
cost at the node k (if k = 0,then ck = 0); pk,l is the minimal traversing cost from the node k to 
the node l. 
Each value of pk,l might be given by input data; or calculated as the Euclidean distances 
between a pair of coordinates of nodes; or calculated by the shortest path search algorithm 
(Warshall-Floyd’s algorithm) when road network is given and vehicles must are follow the 
roads in the network. 

4.4 Optimization algorithm using simulated annealing 
Simulated Annealing (Metropolis method) is adopted as the optimization technique for the 
proposed method since it is characterized by simple stochastic procedures and by global 
searching scope. 
Starting with a random initial state, it is expected to approach an equilibrium point. In the 
proposed method, the three transformation rules described in Sec. 4.2 are applied randomly 
to the string model. The entire algorithm for the VRP is described as follows. 
 

{ I. Preparation} 
Read input data; 
If the link cost are not given from the input data, calculate the minimum path cost pk,l 
 between all pair of tasks k, l including the depot  0; 
{II. Initialization} Generate a random initial feasible solution  x0;  x := x0;  x* := x;                           (2) 
T := INITTEMP; Set N as the averaged neighbourhood size; 
{III. Optimization by SA} Minimize E by repetition of applying randomly one of the three 
transformation rules to the string model corresponding to  x  in the framework of SA; 
{IV. Output} Output the best solution x*. 
 

Step III, that is the main part of this algorithm, is detailed as follows. 
 

Repeat 
        trials := 0; changes := 0; 
       Repeat 
               trials := trials + 1; 
              Generate a new state x´ from the current state x by applying randomly 
              one of the three transformation rules to the string model of  x; 
              If  x´ is feasible  Then 
                      Calculate  ΔE = E(x´) − E(x); 
                      If  ΔE < 0  Then 
                             x´ is accepted as a new state;                                                                                    (3) 
                             If  E(x´) < E(x*)  Then  x* := x´ 
                     Else  x´ is accepted with probability exp(−ΔE/T ) 
                     If  x´ is accepted  Then  changes := changes + 1;  x := x´ 
      Until trials ≥ SIZEFACTOR · N or changes ≥ CUTOFF · N; 
      T := T · TEMPFACTOR 
Until T ≤ INITTEMP / FINDIVISOR 
 

As sketched in Sec. 3.2, in the existing methods using metaheuristics including SA, the 
transformation procedure of a solution is carried out intentionally between two existing 
vehicle routes. However, as descibed in Sec. 4.2, the transformation procedure of a solution 
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of the proposed method is carried out randomly to all over the string data model. Hence, the 
transformation might derive changes in a vehicle route on one occation, it might derive 
changes over several vehicle routes on other occation.  

5. Analysis of generating neighbours in searching process of the proposed 
method for VRP 
As described in the previous section, the proposed method is based on the stochastic 
creation of neighbours on the string data model in searching process. In this section, the 
effects of transformations are classified and analyzed experimentally.   

5.1 The instance of VRP for the analysis 
An instance of VRP for the analysis is taken from the famous Solomon’s bench mark 
problem sets produced by Solomon (Solomon, 1987) and provided from Solomon’s own 
website (Solomon, 2005). c101 is chosen as an instance among them. In c101, the number of 
nodes is 100, the maximum number of vehicles is 25. Moreover, the amount of demand, 
coordinates, time window and service time are given for each node. Although these sets are 
provided for VRP with Time Windows (VRPTW), time window and service time in c101 are 
neglected for dealing with simple VRP.  

5.2 Frequencies of three transformations 
Frequencies of each of three transformations are counted in computational experiments. In 
the computations, according to the preliminary experiments and the reference to the 
recommended values by Johnson et al. (Johnson et al., 1989; 1991), the values of the 
parameters that appear in the proposed SA algorithm are set as follows. 
 

  N = 2L2 (L : length of string) 
  SIZEFACTOR = 8 
  CUTOFF = 0.2 (Repeat iterations in the same temperature T, 
                              until (trials ≥ SIZEFACTOR · N or changes ≥ CUTOFF · N))                           (4) 
  INITTEMP = 20 (Initial temperature) 
  TEMPFACTOR = 0.95 (Tn+1 = 0.95 Tn) 
  FINDIVISOR = 50 (If T ≤ INITTEMP / FINDIVISOR, terminate the whole of the iterations.) 
 

Each of the three transformation rules mentioned in Sec.4.2 should be applied equally 
probably to produce a new feasible state of solution. However, the feasibility rates of the 
results generated from three transformations are not equal. Hence, in order to produce a 
feasible solution generated by each transformation with almost equal probability, applying 
rates of these three transformations at creating neighbours are adjusted, taking account of 
the feasibility rates computed in the preliminary experiment. 
Frequencies of three transformations at creating neighbours are shown by the top bar in  
Fig. 11. Those in feasible solutions are shown by the second bar. Frequencies of feasible 
solutions bringing cost reduction are shown by the third bar. In the procedure of SA, a 
transformation is executed not only in the case of cost reduction but also in the case of cost 
increase at certain probability. Frequencies of three transformations which are really 
executed are shown by the fourth bar. 
When the proportions of three transformations are focused on, the result of the experiment 
is shown as in Fig. 12. The sum of the amount of cost reduction brought by the 
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transformations with cost reduction is shown by the fifth bar. Moreover, the amount of cost 
reduction par frequencies is shown by the sixth bar.  
As the result of the experiment, the fact that all of the three kinds of transformation are 
effective is presented. 
 

 
Fig.11. Frequencies of Three Transformations 

 
Fig.12. Proportions of Three Transformations 

5.3 Classification of effects of each transformation 
The core mechanism of the proposed method is based on the stochastic creation of 
neighbours on the string data model in searching process. Even the result of ‘one-to-one 
exchange’ varies as shown in Fig. 6-Fig. 8 according to the two positions selected randomly 
in the string data model. In this section, the effects of transformations are classified 
according to magnitude of the move. 
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5.3.1 Classification of effects of ‘One to One Exchange’ 
First of all, classification of effects of ‘one to one exchange’ is considered. Let p be the first 
selected position, and q be the second selected position in the string data model. The number 
sp at p is exchanged with the number sq at q in the string s. The effects of ‘one-to-one 
exchange’ are classified as follows. 

P1 : when p = q. In this case, the exchange is meaningless, hence no exchange is 
executed. 

P2 : when sp= sq= 0. In this case, the exchange is meaningless, hence no exchange is 
executed. 

P3 : when (sp = 0 & sq ≠ 0) or (sp ≠ 0 & sq = 0). In this case, two vehicle routes are merged, 
while another vehicle route is divided into two vehicle routes; hence magnitude of 
the move might be large. An example of this case is illustrated in Fig.8 in Sec. 4.2. 

P4 :  when (sp ≠ 0 & sq ≠ 0) & (there is at least one ‘0’ between sp and sq). In this case, two 
nodes belonging to different vehicle routes are exchanged; hence magnitude of the 
move may be medium. An example of this case is illustrated in Fig.7 in Sec. 4.2. 

P5 :  when (sp ≠ 0 & sq ≠ 0) & (sp is not adjacent to sq)  & (there is no ‘0’ between sp and sq). 
In this case, two nodes belonging to the same vehicle route are exchanged; hence 
magnitude of the move may be small. 

P6 : when (sp ≠ 0 & sq ≠ 0) & (sp is adjacent to sq). In this case, two adjacent nodes 
belonging to the same vehicle route are exchanged; hence magnitude of the move 
may be small. An example of this case is illustrated in Fig.6 in Sec. 4.2. 

A result of computational experiment is illustrated in Fig.13. 
 

 
 

Fig.13. Effect of Each Class Related to ‘One to One Exchange’ 

In this figure, dark parts in the bars are expressed as the moves with large effect, while light 
parts as the moves with small effect.  As the result of the experiment, the fact that the move 
with medium effect (P4) is dominant in the SA execution is presented. 
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5.3.2 Classification of effects of ‘Delete and Insert’ 
The effects of ‘delete and insert’ are classified as follows. 

Q1 : when p = q. In this case, the transformation is meaningless, hence no move is 
executed. 

Q2 : when sp= sq= 0. In this case, ‘0’is moved to the adjacent position to another ‘0’ in the 
string. As the result of this transformation, two vehicle routes are merged; hence 
magnitude of the move might be large.  

Q31: when sp = 0 & sq ≠ 0. In this case, two vehicle routes are merged; hence magnitude 
of the move might be large.  

Q32: when sp ≠ 0 & sq = 0. In this case, a node with demand is moved from a vehicles 
route to the tail or the end of another vehicle route; hence magnitude of the move 
may be medium. An example of this case is illustrated in Fig. 9 in Sec. 4.2. 

Q4 : when (sp ≠ 0 & sq ≠ 0) & (there is at least one ‘0’ between sp and sq). In this case, a 
node with demand is moved from a vehicle route into another vehicle route; hence 
magnitude of the move may be medium.  

Q5 :  when (sp ≠ 0 & sq ≠ 0) & (sp is not adjacent to sq )  & (there is no ‘0’ between sp and 
sq). In this case, a node with demand is moved to another position within the same 
vehicle route; hence magnitude of the move may be small. 

Q6 : when (sp ≠ 0 & sq ≠ 0) & (sp is adjacent to sq ) . In this case, two adjacent nodes 
belonging to the same vehicle route are exchanged; hence magnitude of the move 
may be small.  

A result of computational experiment is illustrated in Fig.14. 
 

 
Fig.14. Effect of Each Class Related to ‘Delete and Insert’ 

As the result of the experiment, the fact that the move with medium effect (Q4) is dominant 
in the SA execution is presented. 
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5.3.3 Classification of effects of ‘Partial Reversal’ 
 The effects of ‘partial reversal’ are classified as follows. 

R1 : when p = q. In this case, the transformation is meaningless, hence no move is 
executed. 

R2 : when sp= sq = 0. In this case, a substring partitioned by two ‘0’s is reversed.  
As the result, vehicle routes are reversed but vehicle assignments are not changed; 
hence magnitude of the move may be medium. 

R3 :  when (sp = 0 & sq ≠ 0) or (sp ≠ 0 & sq = 0). In this case, more than one vehicle route is 
changed. Moreover, in the relevant vehicle routes, both composition and routing 
order are changed; hence magnitude of the move might be large. 

R4 : when (sp ≠ 0 & sq ≠ 0) & (there is at least one ‘0’ between sp and sq). In this case, more 
than one vehicle route is changed. Moreover, in the relevant vehicle routes, both 
composition and routing order are changed; hence magnitude of the move might 
be large. 

R5 :  when (sp ≠ 0 & sq ≠ 0) & (sp is not adjacent to sq )  & (there is no ‘0’ between sp and 
sq). In this case, a sub route in a vehicle route is reversed; hence magnitude of the 
move may be small. 

R6 : when (sp ≠ 0 & sq ≠ 0) & (sp is adjacent to sq ). In this case, two adjacent nodes 
belonging route to the same vehicle are exchanged; hence magnitude of the move 
may be small.  

A result of computational experiment is illustrated in Fig.15. 
 

 
Fig. 15. Effect of Each Class Related to ‘Partial Reversal’ 
As the result of the experiment, the fact that the move with possible large effect (R4) and the 
move with small effect (R5) are dominant in the SA procedure is presented. 
Through the entire observation of the effects of moves related to three transformations, it 
seems that each move works appropriately and achieves the expected effects in SA 
executions.  
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The tendency for the move with large effect to be dominant at higher temperature and that 
for the move with small effect to be dominant at lower temperature are recognized in the 
closer inspection over total experiments; the detailed explanation of this topic has not been 
presented yet by the authors of this chapter. 

6. Computational experiments on the proposed method 
Computational experiments have been attempted for testing the performance of the 
proposed method. They have been tried on typical instances for VRPTW, CARP and 
NEARP.  

6.1 Experiments on Solomon’s benchmark problems for VRPTW 
In Vehicle Routing Problem with Time Windows (VRPTW), the earliest arriving time ei and 
the latest arriving time li are specified for each client i, that is to say, the node with demand, 
in addition to the definition of simple VRP. Solomon’s benchmark problems are extremely 
popular VRPTW instances, and have been used for testing performance of methods by 
many researchers. Although in some of instances, optimum solutions have been already 
found by using exact methods, in others, they have not found yet. In both cases, the best 
solutions found by heuristics have been presented in the literature. 
Instances including 25, 50, and 100 clients have been provided from Solomon. In this 
chapter, 7 instances are chosen for computational experiments among 26 instances including 
100 clients and 25 available vehicles. In the instance, each position of clients is given as x-
coordinate and y-coordinate. Link cost between client i and client j is calculated with the 
Euclidian distance. Service time is also given to each client i, in addition to the earliest 
arriving time ei and the latest arriving time li. The geographical data are randomly generated 
in problem instances R101, R102 and R108, clustered in instances C101 and C102, and a mix 
of random and clustered structures in instances RC101 and RC102. Because time windows 
are included in the constraints of the problem, objective function and the relevant procedure 
in the algorithm are modified in order to fit for VRPTW. Time window constraints and load 
capacities are treated as the penalty terms to be added to the objective function (1) as 
follows: 
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where 
is

a  is arriving time at node si; m is the number of vehicles; 
isd is the amount of 

demand of node si; zk is the position of k th ‘0’ in the string s = (s1, s2, · · · , sn)  (let z0 = 0;  
zm = n+1) and Wk is the loading capacity of vehicle k. According to the modification, the 
position on the check of feasibility in the algorithm (3) must be changed as shown in the 
algorithm (6).  
 

Repeat 
       trials := 0; changes := 0; 
       Repeat 
               trials := trials + 1; 
               Generate a new state x´ from the current state x by applying randomly 
               one of the three transformation rules to the string model of  x; 
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               Calculate  ΔE = E(x´) − E(x); 
               If  ΔE < 0  Then 
                         x´ is accepted as a new state;                                                                                        (6) 
                         If  (E(x´) < E(x*) and  x´ is feasible) Then  x* := x´ 
             Else  x´ is accepted with probability exp(−ΔE/T ) 
               If  x´ is accepted  Then  changes := changes + 1;  x := x´ 
       Until trials ≥ SIZEFACTOR · N or changes ≥ CUTOFF · N; 
       T := T · TEMPFACTOR 
Until T ≤ INITTEMP/FINDIVISOR 
 

In the computations, according to the preliminary experiments and the reference to the 
recommended values by Johnson et al. (Johnson et al., 1989, 1991), the values of the 
parameters that appear in the proposed SA algorithm are set as follows. 
 

N = 2L2 (L : length of string) 
SIZEFACTOR = 8 
CUTOFF = 0.2 (Repeat iterations in the same temperature T, 
                           until (trials ≥ SIZEFACTOR · N or changes ≥ CUTOFF · N)) 
INITTEMP = 20 (Initial temperature) 
TEMPFACTOR = 0.95 (Tn+1 = 0.95 Tn)                                                                                             (7) 
FINDIVISOR = 50 (If T ≤ INITTEMP / FINDIVISOR, terminate the whole of the iterations.) 
α = 20 to 100 (to be adjusted according to the tightness of time windows),  β = 1 
(In the experiment on C101 and C102, INITTEMP = 20 and FINDIVISOR = 5 are set 
exceptionally, because these instances are extremely easy to find the best known solutions.) 
 

The procedure related to the creation of an initial solution in step II in the algorithm (2) 
should be modified in order to fit for VRPTW. The initial solution is produced by assigning 
nodes to vehicles in ascending order of the specified earliest arriving time; the initial 
solution might be infeasible. 
The best solutions found by the proposed method are compared with optimum solutions 
obtained by exact methods and best known solutions obtained by existing heuristics. The 
relevant data to be compared are provided by Solomon (Solomon, 2005) and Díaz (Díaz, 
2007). The computation of the proposed method is executed on Windows Vista, with Core 2 
Duo, 2.0GHz CPU. 
 

Instance Optimum 
(Year Published) 

Best Known by Heuristics 
(Year Published) 

Proposed 
Method 

Computing 
Time (sec) 

C101 827.3 (1999) 828.94 (1999) 828.94 76 
C102 827.3 (1999) 828.94 (1995) 828.94 73 
R101 1637.7 (1999) 1645.79 (2000) 1644.33 194 
R102 1466.6 (1999) 1486.12 (1995) 1476.12 189 
R108 Not found yet 960.88 (2001) 958.98 131 

RC101 1619.8 (1999) 1696.94 (1997) 1644.82 189 
RC102 1457.4 (1999) 1554.75 (1997) 1480.46 188 

Table 1. Computational Results on Solomon’s Benchmark Problems 
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As shown in the Table 1, in all instances tested, the best solutions found by the proposed 
method are better than or equal to the best known solutions found by existing heuristics. 
Moreover, it seems that computing time is suited to practical use. 

6.2 Experiments on instances for CARP 
The proposed data model and algorithm are able to apply to the extended CARP defined in 
Sec. 2.2. According to the original paper by the authors of this chapter (Kokubugata et al. 
2006), the outline of it is explained in this section. The data used in this method is based on 
an internal network coding. In the coding, entities (edges, arcs) are stored in a form which is 
embodied as a three dimensional array. The first component of it expresses the head node of 
the entity and the second expresses the tail node. The third is the Boolean value that attains 
1, if and only if the entity is a directed arc. The model to express a state of solution of the 
extended CARP is realized as a sequence of integers, i.e., a string. 
A new state of solution is generated from the present state by one of the following three 
types of transformation rules. The first rule is to exchange a number with another one in the 
string. It is the same rule as that in VRP. The second rule is to delete an arbitrary number 
and then insert it to another position in the string. It is also the same rule as that in VRP. 
However, the third rule ‘partial reversion’ for VRP is not adopted in the extended CARP, 
because ‘partial reversion’ likely makes infeasible neighbours in this problem. Instead, the 
new rule that reverse the traversing direction of an undirected edge is adopted as the third 
transformation rule. This rule is illustrated in Fig. 16. Of course, ‘direction reversal’ can not 
be applied to directed arcs. 
Note that three rules are also applied to the special number ‘0’ in the method for the 
extended CARP.  
 

 
Fig. 16. A Result of ‘Direction Reversal’  

Instances for CARP can be obtained from the web site named CARPLIB that is supported by 
Belenguer (Belenguer, 2005).  In the CARPLIB, some series of CARP are provided. The GDB 
series includes 21 small size problems, each of which contains 19-55 undirected required 
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arcs. The BCCM series includes 34 medium size problems, each of which contains 39-97 
undirected required arcs. Link cost in these instances is not given by Euclidean distance 
between a pair of clients. Cost of both arc with demand and arc without demand is given 
directly from input data. (Edges are treated as bidirectional arcs.) Therefore, link cost 
between the tail of demand arc i and the head of demand arc j is obtained by calculating the 
shortest path traversing intermediate arcs (with demand or without demand) connecting arc 
i and arc j using Warshall-Floyd’s algorithm. 
Computational experiments are attempted to compare the proposed method with two 
existing heuristics. The method of Hertz et al. (Hertz et al., 2000) is based on Tabu Search, 
which is extended from Tabu Search used for VRP solution by Gendreau et al. (Gendreau et 
al., 1994) introduced in Sec. 3.2.  The method of Lacomme et al. (Lacomme et al., 2001) is 
based on Genetic Algorithm, which is extended from Genetic Algorithm used for VRP 
solution by Prins (Prins, 2001) introduced in Sec. 3.2.  The computation of the proposed 
method is executed on Windows XP, with Pentium IV, 1.8GHz CPU. In the computations, 
according to the preliminary experiments and the reference to the recommended values by 
Johnson et al. (Johnson et al., 1989; 1991), the values of the parameters that appear in the 
proposed SA algorithm are set as follows 
 

N = 2L2 (L : length of string) 
SIZEFACTOR = 4 
CUTOFF = 0.1 (Repeat iterations in the same temperature T, 
                           until (trials ≥ SIZEFACTOR · N or changes ≥ CUTOFF · N)) 
INITPROB = 0.4 (Initial acceptance probability)                                                                    (8) 
TEMPFACTOR = 0.99 (Tn+1 = 0.99 Tn) 
FINDIVISOR = 10 (If T ≤ INITTEMP / FINDIVISOR, terminate the whole of the iterations.) 
INITTEMP must be calculated by exploratory SA executions, so as 
to make changes/trials = INITPROB (= 0.4). 
 

Instance 
number 

Num. of 
vehicles 

Num. of 
Required 

arcs 

Hertz 
et al. 

Lacomme 
et al. 

Proposed 
Method 

Computing 
Time (sec) 

GDB1 5 22 316 316 316 3.4 
GDB3 5 22 275 275 275 3.3 
GDB9 10 51 317 303 309 29.6 
GDB23 10 55 235 235 233 59.9 

BCCM1A 2 39 173 173 173 6.6 
BCCM3B 3 35 87 87 87 15.1 
BCCM6C 10 50 329 317 317 22.1 
BCCM9B 4 92 329 326 326 55.6 

Table 2. Computational Results on CARP Instances 

As shown in the Table 2, the proposed method has performance almost equal to the existing 
two heuristics. Moreover, it seems that computing time is satisfactorily short for the 
practical use. 
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6.3 Experiments on instances for NEARP 
The proposed data model and algorithm are also able to apply to NEARP defined in Sec. 2.3. 
According to the original paper by the authors of this chapter (Kokubugata et al. 2007), the 
outline of it is explained in this section. The data used in this method is based on an internal 
network coding as same as that used for the extended CARP. In the coding, all entities 
(nodes, edges, arcs) are stored in a common form which is embodied as a three dimensional 
array. The first component of it expresses the head node of the entity and the second 
expresses the tail node. The third is the Boolean value that attains 1, if and only if the entity 
is an arc. If the head and the tail are the same node, the entity is understood as a single node. 
The model to express a state of solution of NEARP is also realized as a sequence of integers, 
i.e., a string. 
A new state of solution is generated from the present state by one of three types of 
transformation rules as same as those used for the extended CARP. These are ‘one to one 
exchange’, ‘delete and insert’ and ‘direction reversal’. Note that three rules are also applied 
to the special number ‘0’ in the method for NEARP. 
Prins & Bouchenoua have provided 23 instances of NEARP (Prins & Bouchenoua, 2004). 
These instances were produced by their original generator accompanied with 
randomization. They include 1-93 required nodes, 0-94 required edges and 0-149 required 
arcs, among 11-150 nodes and 71-311 links (integrated alias with edges and arcs). As 
mentioned by them, the lower bounds have not been found for their NEARP instances. The 
data files of NEARP instances were sent by them at the authors’ request.  
In the computations, all the same parameter values as used for the extended CARP (8) are 
used again.  
Comparison between the solutions generated by the proposed method and the solutions 
given by Prins & Bouchenoua are conducted for 23 NEARP instances. In Table 3, the 
average deviations over the best value and the averaged computing time are shown. In the 
column of MA, the result of Memetic algorithm given by Prins & Bouchenoua (Prins & 
Bouchenoua, 2004) is shown. In the column of Best*MA, the performance of the best solution 
found with various parameter settings during their experiments is shown. Avg10SA is the 
averaged result of ten computations, while Best10SA is the best result of them. Note that the 
Best10SA is obtained by computations with the standard parameter setting and it is quite 
different from the Best*MA in spite of using the same word ‘Best’.  
The computation of the proposed method was executed on Windows XP, with Pentium IV, 
1.8GHz CPU, while the computation by Prins & Bouchenoua was executed on Windows 98, 
with Pentium III, 1GHz CPU.  
 

 MA MATime 
(sec) Best*MA Avg10SA SATime 

(sec) Best10SA 

Average 1.65% 452.9 (s) 0.38% 1.51% 176.6 (s) 0.22% 

Table 3. Averaged Computational Results on NEARP Instances 

As shown in Table. 3, Avg10SA is superior to MA, and Best10SA obtains better results than 
Best*MA.  
As a result, it is shown that the proposed method has good performance on NEARP. 
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7. Applications to varieties of routing problems 
The proposed method is adaptable to varieties of routing problems abstracted from actual 
city logistics operations. In this section, three examples of varieties are explained briefly.  

7.1 Routing problem with repeated trips 
The case in which repetitive trips of a vehicle are allowed is frequently appeared in actual 
city logistics operations. After the first trip returns to the depot, unloading and loading are 
operated at the depot. Then, the second trip starts. This problem is also dealt with by the 
proposed method. In order to cope with it, another delimiter, for example ‘999’, is 
introduced in the string model (Fig.17). In the transformation procedure of a solution, ‘999’ 
is treated evenly with ‘0’ as well as other numbers which represent nodes with demand. 
 

 
Fig. 17. VRP with Repeated Trips  

This method was presented by the authors of this chapter (Hasama et al., 1999). It can be 
applied to the extended CARP and NEARP in the same way as VRP (Kokubugata et al., 
2007). 

7.2 Routing problem with plural depots 
Planning of vehicle routing related to vehicles belonging to plural depots is required in 
actual city logistics operations. Routing problem in which plural depots are managed at a 
time could be also dealt with by the proposed method. The other delimiter, for example 
‘−999’, is introduced in the string model (Fig.18). In the transformation procedure of a 
solution, ‘−999’ is treated evenly with ‘0’ and other numbers.  
This method was also presented by the authors of this chapter (Hasama et al., 1999). It can 
be applied to the extended CARP and NEARP in the same way as VRP (Kokubugata et al., 
2007). 

7.3 Routing problem with backhauls 
In some cases of the freight transport operations, goods are delivered from the depot and 
empty pallets are retrieved to the depot.  
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Fig. 18. VRP with Plural Depots  

 
 Fig. 19. VRP with Backhauls 
In home-delivery service operations, both pickup and delivery services are carried out. A 
problem related to both deliveries and pickups is considered. Vehicles are loaded with goods 
at a central depot in order to service the delivery points. New goods are collected at the pickup 
points and brought back to the depot (backhauls). This type of problem is called the vehicle 
routing problem with backhauls (VRPB).The proposed method can be applied to VRPB.  
In the string model corresponding to this problem, positive numbers are used for expressing 
delivery points, while negative numbers are used for expressing pickup points. In Fig.19, 
positive numbers are indicated by capital letters, while negative numbers are indicated by 
small letters. Each letter including ‘0’ is treated evenly in the transformation procedure of a 
solution. This method was presented by the authors of this chapter (Hasama et al., 1998). 

8. Conclusion 
As introduced in Sec. 3.2, the applications of Simulated Annealing (SA) to routing problems 
have been evaluated not highly in the literature as compared with those of Tabu Search (TS) 
and Genetic Algorithm (GA) etc. In the core procedure of the prominent method making use 
of SA, only one or two nodes are exchanged between existing two vehicle routes at a time.  
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The descriptions written in this chapter have revealed that the proposed method making use 
of SA for routing problems has superior to other method based on other metaheuristics. The 
explanations made in this chapter are summarized as follows. 
• The proposed method for solving the routing problems consists of simple 

transformation procedures applied over the entire string data model. In the framework 
of SA, each random application of one of transformation rules may cause the exchange 
of tasks between two trips, the move of a set of tasks from one trip to another trip, the 
exchange of tasks in the same trip, the changes in routing order in some trips and so on. 
Because transitions of a solution in the string data model may occasionally cause drastic 
changes in solutions, fast convergence to an equilibrium point might be achieved.  

• The solutions generated by the proposed method are compared with the solutions given by 
other methods by making computational experiments on VRPTW, CARP and NEARP 
instances. In most cases, the proposed method shows superior performance to other methods. 

• The proposed method is adaptable varieties of routing problems abstracted from 
practical logistics operations. The case in which repetitive trips of a vehicle are allowed, 
the case in which plural depots are managed at a time and routing problem with 
backhaul are dealt with. 

• Although the proposed method is advantageous to complicated logistics operations, the 
following topics should be considered in order to apply the method to practical use in 
city logistics. 
• Applications of TS and GA to the proposed string model and the transformation 

rules should be attempted to compare with the proposed method making use of 
SA. The supposition that SA is the fittest for the string model and the 
transformation rules should be confirmed. 

• The proposed data model can be applied to complicated problems such as NEARP 
with time windows, multiple depots cases and pickup and delivery cases. The 
application to these cases should be examined. However, the necessary data of 
actual delivery cases have not been obtained yet. 

• Actual travel time may vary according to traffic conditions. Dynamic routing 
planning system taking account of time dependent link cost should be studied. 

9. References 
Belenguer, J.M. (2005). Web site: http://www.uv.es/~belengue/carp/ 
Clarke, G. & Wright, W. (1964). Scheduling of Vehicles from a Central Depot to a Number of 

Delivery Points, Operations research, Vol. 12, pp. 564-581 
Chistofides, N.; Mingozzi, A. & Toth, P. (1979). The Vehicle Routing Problem, In: 

Combinatorial Optimization, Chistofides, N. ; Mingozzi, A. ; Toth, P. & Sandi, C. 
(Eds.), pp. 315-338, Wiley, Chichester 

Crescenzi, P. & Kann, V. (2000). A Compendium of NP Optimization Problem, Web site: 
http://www.nada.kth.se/~viggo/wwwcompendium/node103.html 

Díaz, B. D. (2007). Web site: http://neo.lcc.uma.es/radi-aeb/WebVRP/index.html 
Fisher, M. L. & Jaikumar, R. (1981). A Generalized Assignment Heuristic for Vehicle 

Routing, Networks, Vol. 11, pp. 109--124. 
Gendreau, M.; Hertz, A. & Laporte, G. (1994). A Tabu Search Heuristic for the Vehicle 

Routing Problem, Management Science ,Vol. 40, pp. 1276–1290. 
Gendreau, M.; Laporte, G. & Potvin, J.-Y. (2002). Metaheuristics for the Capacitated VRP, In: The 

Vehicle Routing Problem, Toth P. & Vigo, D. (Ed), pp. 129–154, SIAM, Philadelphia, 



 Simulated Annealing 

 

154 

Golden, B.L. & Wong, R.T. (1981). Capacitated Arc Routing Problems, Networks, Vol. 11, 
pp.305–315 

Hasama, T.; Kokubugata H. & Kawashima H. (1998). A Heuristic Approach Based on the String 
Model to Solve Vehicle Routing Problem with Backhauls, Preprint for 5th Annual World 
Congress on Intelligent Transport Systems, No. 3025, Seoul, Korea, Oct. 1998 

Hasama, T.; Kokubugata, H. & Kawashima H. (1999.) A Heuristic Approach Based on the String 
Model to Solve Vehicle Routing Problem with Various Conditions, Preprint for World 
Congress on Intelligent Transport Systems,  No.3027, Toronto, Canada, Nov. 1999 

Hertz, A.; Laporte, G. & Mittaz, M. (2000). A Tabu Search Heuristic for the Capacitated Arc 
Routing Problem, Operations research, Vol. 48, pp. 129–135 

Johnson, D.S.; Aragon, C.R.; MacGeoch, L.A. & Schevon, C. (1989). Optimization by 
Simulated Annealing : An Experimental Evaluation, Part I, Graph Partitioning, 
Operations research, Vol. 37,   pp. 865-892 

Johnson, D.S.; Aragon, C.R.; MacGeoch, L.A. & Schevon, C. (1991). Optimization by 
Simulated Annealing : An Experimental Evaluation, Part II, Graph Colouring and 
Number Partitioning, Operations research, Vol. 39,   pp. 378-406 

Kokubugata, H.; Itoyama, H. & Kawashima, H. (1997). Vehicle Routing Methods for City 
Logistics Operations, Preprint for 8th IFAC Symposium on Transportation Systems, 
pp.727-732, Hania, Greece, June 1997 

Kokubugata, H.; Hirashima, K. & Kawashima, H. (2006). A Practical Solution of Capacitated 
Arc Routing for City Logistics, Proceeding of 11th IFAC Symposium on Control in 
Transportation Systems,  No.222, Delft, The Netherlands, Aug. 2006 

Kokubugata, H.; Moriyama, A. & Kawashima, H. (2007). A Practical Solution Using 
Simulated Annealing for General Routing Problems with Nodes, Edges, and Arcs, 
Lecture Notes in Computer Science, Vol. 4638 (SLS2007), pp. 136-149, Springer, Berlin 

Lacomme, P.; Prins, C. & Ramdane-Cherif, W. (2001). A Genetic Algorithm for the 
Capacitated Arc Routing Problem and Its Extensions, Lecture Notes in Computer 
Science, Vol. 2037, pp. 473–483, Springer, Berlin 

Lin, S. & Kernighan, B. W. (1973). An Effective Heuristic Algorithm for the Traveling 
Salesman Problem, Operations research, Vol. 21, pp. 498-516. 

Osman, I. H. (1993). Metastrategy Simulated Annealing and Tabu Search Algorithms for the 
Vehicle Routing Problem, Annals of Operations Research, Vol. 41, pp. 421-451 

Prins, C. (2001). A Simple and Effective Evolutionary Algorithm for the Vehicle Routing 
Problem, Research Report, University of Technology of Troyes, France,  Computers & 
operations research, 2004, Vol. 31, No. 12, pp. 1985-2002.   

Prins, C. & Bouchenoua, S. (2004). A Memetic Algorithm Solving the VRP, the CARP and 
more General Routing Problems with Nodes, Edges and Arcs, In: Recent Advances in 
Memetic Algorithms, Studies in Fuzziness and Soft Computing 166, Hart W.; Kranogor 
N. & Smith J. (Eds.),  pp. 65-85, Springer, Berlin 

Solomon, M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems with 
Time Window Constraints, Operations Research, Vol. 35, No. 2, pp. 254-265 

Solomon, M., (2005). Web site: http://w.cba.neu.edu/~msolomon/home.htm 
Taniguchi, E.; Thompson R.G.; Yamada T. & Van Duin R. (2001). City Logistics: Network 

Modelling and Intelligent Transport Systems, Pergamon, Oxford 
Toth, P.  & Vigo, D. (Eds.) (2002). The Vehicle Routing Problem, SIAM, Philadelphia 
Van Breedam, A. (1996). An Analysis of the Effect of Local Improvement Operators in GA 

and SA for the Vehicle Routing Problem, RUCA working paper 96/14, University of 
Antwerp, Belgium 



9 

Theory and Applications of Simulated 
Annealing for Nonlinear  

Constrained Optimization1 
Benjamin W. Wah1, Yixin Chen2 and Tao Wang3 

1Department of Electrical and Computer Engineering and the Coordinated Science 
Laboratory, University of Illinois, 

2Department of Computer Science, Washington University, 
3Synopsys, Inc. 

USA 

1. Introduction 
A general mixed-integer nonlinear programming problem (MINLP) is formulated as follows: 

 
(1) 

where z = (x, y)T ∈ Z; x ∈ Rv and y ∈ Dw are, respectively, bounded continuous and discrete 

variables; f(z) is a lower-bounded objective function; g(z) = (g1(z),…, gr(z))T is a vector of r 
inequality constraint functions;2 and h(z)= (h1(z),…,hm(z))T is a vector of m equality constraint 
functions. Functions f(z), g(z), and h(z) are general functions that can be discontinuous, non-
differentiable, and not in closed form. 
Without loss of generality, we present our results with respect to minimization problems, 
knowing that maximization problems can be converted to minimization ones by negating 
their objectives. Because there is no closed-form solution to Pm, we develop in this chapter 
efficient procedures for finding locally optimal and feasible solutions to Pm, demonstrate 
that our procedures can lead to better solutions than existing methods, and illustrate the 
procedures on two applications. The proofs that our procedures have well-behaved 
convergence properties can be found in the reference [27], We first define the following 
terms. 
                                                 
1 Research supported by the National Science Foundation Grant IIS 03-12084 and a 
Department of Energy Early Career Principal Investigator Grant. 
2 Given two vectors V1 and V2 of the same dimension, V1 ≥ V2 means that each element of V1 

is greater than or equal to the corresponding element of V2; V1 > V2 means that at least one 
element of V1 is greater than the corresponding element of V2 and the other elements are 
greater than or equal to the corresponding elements of V2. 
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Definition 1. A mixed neighborhood Nm(z) for z = (x, y)T in the mixed space Rv × Dw
 is: 

 
(2) 

where Nc(x) = {x′ : kx′ − xk ≤ ε and ε → 0} is the continuous neighborhood of x, and the discrete 

neighborhood Nd(y) is a finite user-defined set of points {y′ ∈ Dw} such that y′ ∈ Nd(y) ⇔ y ∈ 

Nd(y′) [1]. Here, ε → 0 means that ε is arbitrarily close to 0. 
Definition 2. Point z of Pm is a feasible point iff h(z) = 0 and g(z) ≤ 0. 
Definition 3. Point z∗ is a constrained local minimum (CLMm) of Pm iff z∗ is feasible, and f(z∗) ≤ 
f(z) with respect to all feasible z ∈Nm(z∗). 
Definition 4. Point z∗ is a constrained global minimum (CGMm) of Pm iff z∗ is feasible, and  
f(z∗) ≤ f(z) for every feasible z ∈ Z. The set of all CGMm of Pm is Zopt. 
Note that a discrete neighborhood is a user-defined concept because it does not have any 
generally accepted definition. Hence, it is possible for z = (x, y)T to be a CLMm to a 

neighborhood Nd(y) but not to another neighborhood . The choice, however, does 
not affect the validity of a search as long as one definition is consistently used throughout. 
Normally, one may choose Nd(y) to include discrete points closest to z, although a search 
will also be correct if the neighborhood includes “distant” points. 
Finding a CLMm of Pm is often challenging. First, f(z), g(z), and h(z) may be non-convex and 
highly nonlinear, making it difficult to even find a feasible point or a feasible region. 
Moreover, it is not always useful to keep a search within a feasible region because there may 
be multiple disconnected feasible regions. To find high-quality solutions, a search may have 
to move from one feasible region to another. Second, f(z), g(z), and h(z) may be 
discontinuous or may not be differentiable, rendering it impossible to apply existing 
theories based on gradients. 
A popular method for solving Pm is the penalty method (Section 2.1). It transforms Pm into 
an unconstrained penalty function and finds suitable penalties in such a way that a global 
minimum of the penalty function corresponds to a CGMm of Pm. Because it is 
computationally intractable to look for global minima when the penalty function is highly 
nonlinear, penalty methods are only effective for finding CGMm in special cases. 
This chapter is based on the theory of extended saddle points in mixed space [25, 29] 
(Section 2.2), which shows the one-to-one correspondence between a CLMm of Pm and an 
extended saddle point (ESP) of the corresponding penalty function. The necessary and 
sufficient condition allows us to find a CLMm of Pm by looking for an ESP of the 
corresponding penalty function. 
One way to look for those ESPs is to minimize the penalty function, while gradually 
increasing its penalties until they are larger than some thresholds. The approach is not 
sufficient because it also generates stationary points of the penalty function that are not 
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CLMm of Pm. To avoid those undesirable stationary points, it is possible to restart the search 
when such stationary points are reached, or to periodically decrease the penalties in order 
for the search to escape from such local traps. However, this simple greedy approach for 
updating penalties may not always work well across different problems. 
Our goals in this chapter are to design efficient methods for finding ESPs of a penalty 
formulation of Pm and to illustrate them on two applications. We have made three 
contributions in this chapter. 
First, we propose in Section 3.1 a constrained simulated annealing algorithm (CSA), an 
extension of conventional simulated annealing (SA) [18], for solving Pm. In addition to 
probabilistic descents in the problem-variable subspace as in SA, CSA does probabilistic 
ascents in the penalty subspace, using a method that controls descents and ascents in a 
unified fashion. Because CSA is sample-based, it is inefficient for solving large problems. To 
this end, we propose in Section 3.2 a constraint-partitioned simulated annealing algorithm 
(CPSA). By exploiting the locality of constraints in many constraint optimization problems, 
CPSA partitions Pm into multiple loosely coupled subproblems that are related by very few 
global constraints, solves each subproblem independently, and iteratively resolves the 
inconsistent global constraints. 
Second, we show in Section 4 the asymptotic convergence of CSA and CPSA to a 
constrained global minimum with probability one in discrete constrained optimization 
problems, under a specific temperature schedule [27]. The property can be proved by 
modeling the search as a strongly ergodic Markov chain and by showing that CSA and 
CPSA minimize an implicit virtual energy at any constrained global minimum with 
probability one. The result is significant because it extends conventional SA, which 
guarantees asymptotic convergence in discrete unconstrained optimization, to that in 
discrete constrained optimization. It also establishes the condition under which optimal 
solutions can be found in constraint-partitioned nonlinear optimization problems. 
Last, we evaluate CSA and CPSA in Section 5 by solving some benchmarks in continuous 
space and by demonstrating their effectiveness when compared to other dynamic penalty 
methods. We also apply CSA to solve two real-world applications, one on sensor-network 
placements and another on out-of-core compiler code generation. 

2. Previous work on penalty methods 

Direct and penalty methods are two general approaches for solving Pm. Since direct 
methods are only effective for solving some special cases of Pm, we focus on penalty 
methods in this chapter. 
A penalty function of Pm is a summation of its objective and constraint functions weighted 

by penalties. Using penalty vectors α ∈ Rm
 and β ∈ Rr, the general penalty function for Pm is: 

 (3) 

where P and Q are transformation functions. The goal of a penalty method is to find 
suitable α∗ and β∗ in such a way that z∗ that minimizes (3) corresponds to either a CLMm or 
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a CGMm of Pm. Penalty methods belong to a general approach that can solve continuous, 
discrete, and mixed constrained optimization problems, with no continuity, differentiability, 
and convexity requirements. 
When P(g(z)) and Q(h(z)) are general functions that can take positive and negative values, 

unique values of α∗ and β∗ must be found in order for a local minimum z∗ of (3) to 

correspond to a CLMm or CGMm of Pm. (The proof is not shown.) However, the approach of 

solving Pm by finding local minima of (3) does not always work for discrete or mixed 

problems because there may not exist any feasible penalties at z∗. (This behavior is 

illustrated in Example 1 in Section 2.1.) It is also possible for the penalties to exist at z∗ but 
(3) is not at a local minimum there. A special case exists in continuous problems when 
constraint functions are continuous, differentiable, and regular. For those problems, the 
Karush-Kuhn-Tucker (KKT) condition shows that unique penalties always exist at 
constrained local minima [21]. In general, existing penalty methods for solving Pm transform 

g(z) and h(z) in (3) into non-negative functions before finding its local or global minima. In 
this section, we review some existing penalty methods in the literature. 

2.1 Penalty methods for constrained global optimization 
Static penalty methods. A static-penalty method [21, 22] formulates Pm as the minimization of 
(3) when its transformed constraints have the following properties: a) P(h(z)) ≥ 0 and Q(g(z)) 
≥ 0; and b) P(h(z)) = 0 iff h(z) = 0, and Q(g(z)) = 0 iff g(z) ≤ 0. By finding suitable penalty 
vectors α and β, an example method looks for z∗ by solving the following problem with 
constant ρ > 0: 

 

(4) 

where gj(z)+ = max(0, gj (z)), and g(z)+ = (g1(z)+, . . . , gr(z)+)T . 
Given z∗, an interesting property of P1 is that z∗ is a CGMm of Pm iff there exist finite α∗ ≥ 0 
and β∗ ≥ 0 such that z∗ is a global minimum of Ls((z, α∗∗, β∗∗)T ) for any α∗∗ > α∗ and β∗∗ > 

β∗. To show this result, note that αi and βj in P1 must be greater than zero in order to 
penalize those transformed violated constraint functions |hi(z)|ρ and (gj(z)+) ρ, which are 
non-negative with a minimum of zero. As (4) is to be minimized with respect to z, increasing 
the penalty of a violated constraint to a large enough value will force the corresponding 
transformed constraint function to achieve the minimum of zero, and such penalties always 
exist if a feasible solution to Pm exists. At those points where all the constraints are satisfied, 
every term on the right of (4) except the first is zero, and a global minimum of (4) 
corresponds to a CGMm of Pm. 
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Example 1. Consider the following simple discrete optimization problem: 

 

(5) 

Obviously, y∗ = 0. Assuming a penalty function Lp((y, α)T ) = f(y)+ αy and Nd(y) = {y−1, 

y+1}, there is no single α∗ that can make Lp((y, α∗)T ) a local minimum at y∗ = 0 with respect 
to y = ±1. This is true because we arrive at an inconsistent α∗ when we solve the following 
inequalities: 

 

On the other hand, by using Ls((y, α)T ) = f(y) + α |y| and by setting α∗ = 
4

3
 , the CGMd of 

(5) corresponds to the global minimum of Ls((y, α∗∗)T ) for any α∗∗ > α∗.                          
■ 
A variation of the static-penalty method proposed in [16] uses discrete penalty values and 
assigns a penalty value αi(hi(z)) when hi(z) exceeds a discrete level ℓi (resp., βj(gj(z)) when 
gj(z)+ exceeds a discrete level ℓj), where a higher level of constraint violation entails a larger 
penalty value. The penalty method then solves the following minimization problem: 

 
(6) 

A limitation common to all static-penalty methods is that their penalties have to be found by 
trial and error. Each trial is computationally expensive because it involves finding a global 
minimum of a nonlinear function. To this end, many penalty methods resort to finding local 
minima of penalty functions. However, such an approach is heuristic because there is no 
formal property that relates a CLMm of Pm to a local minimum of the corresponding penalty 
function. As illustrated earlier, it is possible that no feasible penalties exist in order to have a 
local minimum at a CLMm in the penalty function. It is also possible for the penalties to exist 
at the CLMm but the penalty function is not at a local minimum there. 
Dynamic penalty methods. Instead of finding α∗∗ and β∗∗ by trial and error, a dynamic-
penalty method [21, 22] increases the penalties in (4) gradually, finds the global minimum z∗ 
of (4) with respect to z, and stops when z∗ is a feasible solution to Pm. To show that z∗ is a 
CGMm when the algorithm stops, we know that the penalties need to be increased when z∗ is 
a global minimum of (4) but not a feasible solution to Pm. The first time z∗ is a feasible 
solution to Pm, the solution must also be a CGMm. Hence, the method leads to the smallest 
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α∗∗ and β∗∗ that allow a CGMm to be found. However, it has the same limitation as static-
penalty methods because it requires computationally expensive algorithms for finding the 
global minima of nonlinear functions. 
There are many variations of dynamic penalty methods. A well-known one is the non-
stationary method (NS) [17] that solves a sequence of minimization problems with the 
following in iteration t: 

 
(7) 

where  
Here, C and ρ are constant parameters, with a reasonable setting of C = 0.01 and ρ = 2. An 
advantage of the NS penalty method is that it requires only a few parameters to be tuned. 
Another dynamic penalty method is the adaptive penalty method (AP) [5] that makes use of a 
feedback from the search process. AP solves the following minimization problem in 
iteration t: 

 
(8) 

where αi(t) is, respectively, increased, decreased, or left unchanged when the constraint  
hi(z) = 0 is respectively, infeasible, feasible, or neither in the last ℓ iterations. That is, 

 

(9) 

where ℓ is a positive integer, λ1, λ2 > 1, and λ1 ≠ λ2 in order to avoid cycles in updates. We 
use ℓ = 3, λ1 = 1.5, and λ2 = 1.25 in our experiments. A similar rule applies to the updates of 
βj(t). 
The threshold penalty method estimates and dynamically adjusts a near-feasible threshold qi(t) 
(resp., q′j (t)) for each constraint in iteration t. Each threshold indicates a reasonable amount 
of violation allowed for promising but infeasible points during the solution of the following 
problem: 

 
(10) 

There are two other variations of dynamic penalty methods that are not as popular: the 
death penalty method simply rejects all infeasible individuals [4]; and a penalty method that 
uses the number of violated constraints instead of the degree of violations in the penalty 
function [20]. 
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Exact penalty methods. Besides the dynamic penalty methods reviewed above that require 
solving a series of unconstrained minimization problems under different penalty values, the 
exact penalty methods are another class of penalty methods that can yield an optimal solution 
by solving a single unconstrained optimization of the penalty function with appropriate 
penalty values. The most common form solves the following minimization problem in 
continuous space [35, 6]: 

 
(11) 

It has been shown that, for continuous and differentiable problems and when certain 
constraint qualification conditions are satisfied, there exists c∗ > 0 such that the x∗ that 
minimizes (11) is also a global optimal solution to the original problem [35, 6]. In fact, c 
needs to be larger than the summation of all the Lagrange multipliers at x∗, while the 
existence of the Lagrange multipliers requires the continuity and differentiability of the 
functions. 
Besides (11), there are various other formulations of exact penalty methods [11, 12, 10, 3]. 
However, they are limited to continuous and differentiable functions and to global 
optimization. The theoretical results for these methods were developed by relating their 
penalties to their Lagrange multipliers, whose existence requires the continuity and 
differentiability of the constraint functions. 
In our experiments, we only evaluate our proposed methods with respect to dynamic 
penalty methods P3 and P4 for the following reasons. It is impractical to implement P1 

because it requires choosing some suitable penalty values a priori. The control of progress in 
solving P2 is difficult because it requires tuning many (ℓ· (m+r)) parameters that are hard to 
generalize. The method based on solving P5 is also hard to generalize because it depends on 
choosing an appropriate sequence of violation thresholds. Reducing the thresholds quickly 
leads to large penalties and the search trapped at infeasible points, whereas reducing the 
thresholds slowly leads to slow convergence. We do not evaluate exact penalty methods 
because they were developed for problems with continuous and differentiable functions. 

2.2 Necessary and sufficient conditions on constrained local minimization 
We first describe in this section the theory of extended saddle points (ESPs) that shows the 
one-to-one correspondence between a CLMm of Pm and an ESP of the penalty function. We 
then present the partitioning of the ESP condition into multiple necessary conditions and the 
formulation of the corresponding subproblems. Because the results have been published 
earlier [25, 29], we only summarize some high-level concepts without the precise formalism 
and their proofs. 
Definition 5. For penalty vectors α ∈ Rm

 and β ∈ Rr, we define a penalty function of Pm as: 

 
(12) 
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Next, we informally define a constraint-qualification condition needed in the main theorem 
[25]. Consider a feasible point z′ = (x′, y′)T and a neighboring point z′′ = (x′+ p , y ′)T under an 
infinitely small perturbation along direction p  ∈X in the x subspace. When the constraint-
qualification condition is satisfied at z′, it means that there is no p  such that the rates of 
change of all equality and active inequality constraints between z′′ and z′ are zero. To see 
why this is necessary, assume that f(z) at z′ decreases along p  and that all equality and 
active inequality constraints at z′ have zero rates of change between z′′ and z′. In this case, it 
is not possible to find some finite penalty values for the constraints at z′′ in such a way that 
leads to a local minimum of the penalty function at z′ with respect to z′′. Hence, if the above 
scenario were true for some p  at z′, then it is not possible to have a local minimum of the 
penalty function at z′. In short, constraint qualification at z′ requires at least one equality or 
active inequality constraint to have a non-zero rate of change along each direction p  at z′ in 
the x subspace. 
Theorem 1. Necessary and sufficient condition on CLMm of Pm [25]. Assuming z∗ ∈ Z of Pm 

satisfies the constraint-qualification condition, then z∗ is a CLMm of Pm iff there exist some 
finite α∗ ≥ 0 and β∗ ≥ 0 that satisfies the following extended saddle-point condition (ESPC): 

 (13) 

for any α** > α* and β** > β* and for all z∈Nm(z*), α∈ Rm, and β∈ Rr. 

Note that (13) can be satisfied under rather loose conditions because it is true for a range of 
penalty values and not for unique values. For this reason, we call (z*, α**, β**)T an extended 
saddle point (ESP) of (12). The theorem leads to an easy way for finding CLMm. Since an ESP 
is a local minimum of (12) (but not the converse), z* can be found by gradually increasing 
the penalties of those violated constraints in (12) and by repeatedly finding the local minima 
of (12) until a feasible solution to Pm is obtained. The search for local minima can be 
accomplished by any existing local-search algorithm for unconstrained optimization. 
Example 1 (cont’d). In solving (5), if we use Lm((y, α)T) = f(y) + α|y| and choose α* = 1 we 
have an ESP at y* = 0 for any α** > α*. This establishes a local minimum of Lm((y, α)T )at y* = 
0 with respect to Nd(y) = {y − 1, y + 1}. Note that the α* that satisfies Theorem 1 is only 
required to establish a local minimum of Lm((y, α)T ) at y* = 0 and is, therefore, smaller than 

the α* (=
4

3
) required to establish a global minimum of Lm((y, α)T )in the static-penalty 

method.                                                                                                                                                  ■ 
An important feature of the ESPC in Theorem 1 is that it can be partitioned in such a way 
that each subproblem implementing a partitioned condition can be solved by looking for 
any α** and β** that are larger than α* and β*. 
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Consider Pt, a version of Pm whose constraints can be partitioned into N subsets: 

 

(14) 

Each subset of constraints can be treated as a subproblem, where Subproblem t, t = 1, . . . ,N, 
has local state vector of ut mixed variables, and  
Here, z(t) includes all the variables that appear in any of the mt local equality constraint 

functions 
 

and the rt local inequality constraint functions 

. Since the partitioning is by constraints, z(1), . . . , z(N) may 

overlap with each other. Further, z(g) includes all the variables that appear in any of the p 

global equality constraint functions H = (H1, . . . ,Hp)T and the q global inequality constraint 
functions G = (G1, . . . , Gq)T. 
We first define Nm(z), the mixed neighborhood of z for Pt, and decompose the ESPC in (13) 
into a set of necessary conditions that collectively are sufficient. Each partitioned ESPC is 
then satisfied by finding an ESP of the corresponding subproblem, and any violated global 
constraints are resolved by finding some appropriate penalties. 
Definition 6.  the mixed neighborhood of z for Pt when partitioned by its constraints, 
is: 

 
(15) 

where  is the mixed neighborhood of z(t) (see Definition 2). 
Intuitively, is separated into N neighborhoods, where the tth neighborhood only 
perturbs the variables in z(t) while leaving those variables in z\z(t) unchanged. 
Without showing the details, we can consider Pt as a MINLP and apply Theorem 1 to derive 
its ESPC. We then decompose the ESPC into N necessary conditions, one for each 
subproblem, and an overall necessary condition on the global constraints across the 
subproblems. We first define the penalty function for Subproblem t. 
Definition 7. Let  be the sum of the transformed 
global constraint functions weighted by their penalties, where 

are the penalty vectors for the global 
constraints. Then the penalty function for Pt in (14) and the corresponding penalty function 
in Subproblem t are defined as follows: 

 
(16) 
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 (17) 

where  are the 
penalty vectors for the local constraints in Subproblem t. 
Theorem 2. Partitioned necessary and sufficient ESPC on CLMm of Pt [25]. Given  the 
ESPC in (13) can be rewritten into N + 1 necessary conditions that, collectively, are 
sufficient: 

 

 
(18) 

 (19) 

for any  

and for all   
Theorem 2 shows that the original ESPC in Theorem 1 can be partitioned into N necessary 
conditions in (18) and an overall necessary condition in (19) on the global constraints across 
the subproblems. Because finding an ESP to each partitioned condition is equivalent to 
solving a MINLP, we can reformulate the ESP search of the tth condition as the solution of 
the following optimization problem: 

 
                                                        subject to    

(20) 

The weighted sum of the global constraint functions in the objective of (20) is important 
because it leads to points that minimize the violations of the global constraints. When γT and 

ηT are large enough, solving ( )t
tP will lead to points, if they exist, that satisfy the global 

constraints. Note that ( )t
tP  is very similar to the original problem and can be solved by the 

same solver to the original problem with some modifications on the objective function to be 
optimized. 
In summary, we have shown in this section that the search for a CLMm of Pm is equivalent to 
finding an ESP of the corresponding penalty function, and that this necessary and sufficient 
condition can be partitioned into multiple necessary conditions. The latter result allows the 
original problem to be decomposed by its constraints to multiple subproblems and to the 
reweighting of those violated global constraints defined by (19). The major benefit of this 
decomposition is that each subproblem involves only a fraction of the original constraints 
and is, therefore, a significant relaxation of the original problem with much lower 
complexity. The decomposition leads to a large reduction in the complexity of the original 
problem if the global constraints is small in quantity and can be resolved efficiently. We 
demonstrate in Section 5 that the number of global constraints in many benchmarks is 
indeed small when we exploit the locality of the constraints. In the next section, we describe 
our extensions to simulated annealing for finding ESPs. 
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3. Simulated annealing for constrained optimization 
In this section, we present three algorithms for finding ESPs: the first two implementing the 
results in Theorems 1 and 2, and the third extending the penalty search algorithms in 
Section 2.1. All three methods are based on sampling the search space of a problem during 
their search and can be applied to solve continuous, discrete, and mixed-integer 
optimization problems. Without loss of generality, we only consider Pm with equality 
constraints, since an inequality constraint gj(z) ≤ 0 can be transformed into an equivalent 
equality constraint gj(z)+ = 0. 

3.1 Constrained simulated annealing (CSA) 
Figure 1 presents CSA, our algorithm for finding an ESP whose (z*, α**)T satisfies (13). In 
addition to probabilistic descents in the z subspace as in SA [18], with an acceptance 
probability governed by a temperature that is reduced by a properly chosen cooling 
schedule, CSA also does probabilistic ascents in the penalty subspace. The success of CSA 
lies in its strategy to search in the joint space, instead of applying SA to search in the 
subspace of the penalty function and updating the penalties in a separate phase of the 
algorithm. The latter approach would be taken in existing static and the dynamic penalty 
methods discussed in Section 2.1. CSA overcomes the limitations of existing penalty 
methods because it does not require a separate algorithm for choosing penalties. The rest of 
this section explains the steps of CSA [30, 28]. 
 

 
 

Figure 1. CSA: Constrained simulated annealing (see text for the initial values of the 
parameters). The differences between CSA and SA lie in their definitions of state z, 
neighborhood Nm(z), generation probability G(z, z′) and acceptance probability AT (z, z′). 
 

Line 2 sets a starting point z ← (z, α)T , where z can be either user-provided or randomly 
generated (such as using a fixed seed 123 in our experiments), and α is initialized to zero. 
Line 3 initializes control parameter temperature T to be so large that almost any trial point z′ 
will be accepted. In our experiments on continuous problems, we initialize T  

by first randomly generating 100 points of x and their corresponding neighbors  
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x′ ∈ Nc(x) in close proximity, where |x′i−xi| ≤ 0.001, and then setting 

 Hence, we use a large initial T if the function 

is rugged is large), or the function is not rugged but its 
constraint violation (|hi(x)|) is large. We also initialize κ to 0.95 in our experiments. 
Line 4 sets the number of iterations at each temperature. In our experiments, we choose NT 

← ζ (20n + m) where ζ ← 10(n + m), n is the number of variables, and m is the number of 
equality constraints. This setting is based on the heuristic rule in [9] using n +m instead of n. 
Line 5 stops CSA when the current z is not changed, i.e., no other z′ is accepted, in two 
successive temperature changes, or when the current T is small enough (e.g. T < 10−6). 
Line 7 generates a random point z′ ∈ Nm(z) from the current , where  
Λ = Rm

 is the space of the penalty vector. In our implementation, Nm(z) consists of (z′, α)T 

and  (z, α′)T , where z′∈  (see Definition 1), and α′ ∈  is a point neighboring to 
α when h(z) ≠ 0: 

 (21) 

and  (22) 

According to this definition, αi is not perturbed when hi(z) = 0 is satisfied. 
G(z, z′), the generation probability from z to z′ ∈Nm(z), satisfies: 

 
(23) 

Since the choice of G(z, z′) is arbitrary as long as it satisfies (23), we select z′ in our 
experiments with uniform probability across all the points in Nm(z), independent of T: 

 
(24) 

As we perturb either z or α but not both simultaneously, (24) means that z′ is generated 
either by choosing z′ ∈  randomly or by generating α′ uniformly in a predefined 
range. 
Line 8 accepts z′ with acceptance probability AT (z, z′) that consists of two components, 
depending on whether z or α is changed in z′: 

 

(25) 
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The acceptance probability in (25) differs from the acceptance probability used in 
conventional SA, which only has the first case in (25) and whose goal is to look for a global 
minimum in the z subspace. Without the α subspace, only probabilistic descents in the z 
subspace are carried out. 
 

 
Figure 2. CPSA: Constraint-partitioned simulated annealing. 

In contrast, our goal is to look for an ESP in the joint Z × Λ space, each existing at a local 
minimum in the z subspace and at a local maximum in the α subspace. To this end, CSA 

carries out probabilistic descents of  with respect to z for each fixed α. That is, 

when we generate a new z′ under a fixed α, we accept it with probability one when 

is negative; otherwise, we accept it with probability 
. This step has exactly the same effect as in conventional SA; that is, it performs 

descents with occasional ascents in the z subspace. 

However, descents in the z subspace alone will lead to a local/global minimum of the 
penalty function without satisfying the corresponding constraints. In order to satisfy all the 
constraints, CSA also carries out probabilistic ascents of  with respect to α for 
each fixed z in order to increase the penalties of violated constraints and to force them into 

satisfaction. Hence, when we generate a new α′ under a fixed z, we accept it with probability 

one when   is positive; otherwise, we accept it with 

probability . This step is the same as that in conventional SA when performing 
ascents with occasional descents in the α subspace. Note that when a constraint is satisfied, 
the corresponding penalty will not be changed according to (22). 
Finally, Line 10 reduces T by the following cooling schedule after looping NT times at given T: 

 (26) 
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At high T, (25) allows any trial point to be accepted with high probabilities, thereby 
allowing the search to traverse a large space and overcome infeasible regions. When T is 
reduced, the acceptance probability decreases, and at very low temperatures, the algorithm 
behaves like a local search. 

3.2 Constraint-Partitioned Simulated Annealing (CPSA) 
We present in this section CPSA, an extension of CSA that decomposes the search in CSA 
into multiple subproblems after partitioning the constraints into subsets. Recall that, 
according to Theorem 2, Pt in (14) can be partitioned into a sequence of N subproblems 
defined in (20) and an overall necessary condition defined in (19) on the global constraints 
across the subproblems, after choosing an appropriate mixed neighborhood. Instead of 
considering all the constraints together as in CSA, CPSA performs searches in multiple 
subproblems, each involving a small subset of the constraints. As in CSA, we only consider 
Pt with equality constraints. 
Figure 2 illustrates the idea in CPSA. Unlike the original CSA that solves the problem as a 
whole, CPSA solves each subproblem independently. In Subproblem t, t = 1, ...,N, CSA is 
performed in the (z(t), α(t))T subspace related to the local constraints h(t)(z(t)) = 0. In 
addition, there is a global search that explores in the (z(g),γ)T subspace on the global 
constraints H(z) = 0. This additional search is needed for resolving any violated global 
constraints. 
 

 
Figure 3. The CPSA search procedure. 
Figure 3 describes the CPSA procedure. The first six lines are similar to those in CSA. 
To facilitate the convergence analysis of CPSA in a Markov-chain model, Lines 7-14 
randomly pick a subproblem for evaluation, instead of deterministically enumerating the 
subproblems in a round-robin fashion, and stochastically accept a new probe using an 
acceptance probability governed by a decreasing temperature. This approach leads to a 
memoryless Markovian process in CPSA. 
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Line 7 randomly selects Subproblem i, i = 1 . . . ,N +1, with probability Ps(t), where Ps(t) can 
be arbitrarily chosen as long as: 

 
(27) 

When t is between 1 and N (Line 8), it represents a local exploration step in Subproblem t. In 
this case, Line 9 generates a trial point  from the current point 

 using a generation probability G(t)(z, z′) that can be arbitrary as long as the 
following is satisfied: 

 
(28) 

The point is generated by perturbing z(t) and α(t) in their neighborhood : 

 (29) 

 
                                  

(30) 
 

and  is defined in (15) and  This means that z′ ∈  only differs 
from z in z(t) or α(t) and remains the same for the other variables. This is different from CSA 

that perturbs z in the overall variable space. As in CSA, αi is not perturbed when hi(z(t)) = 0 

is satisfied. Last, Line 10 accepts z′ with the Metropolis probability AT (z, z′) similar to that in 
(25): 

 

(31) 

When t = N + 1 (Line 11), it represents a global exploration step. In this case, Line 12 

generates a random trial point  using a generation probability G(g)(z, z′)  

that satisfies the condition similar to that in (28). Assuming
1mN (z(g)) to be the mixed 

neighborhood of z(g) and Λ(g) = Rp, z′ is obtained by perturbing z(g) and γ in their 

neighborhood : 

 (32) 

 (33) 
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 (34) 

Again, z′ is accepted with probability AT (z, z′) in (31) (Line 13). Note that both  (z) 

and  ensure the ergodicity of the Markov chain, which is required for achieving 
asymptotic convergence. 
When compared to CSA, CPSA reduces the search complexity through constraint 
partitioning. Since both CSA and CPSA need to converge to an equilibrium distribution of 
variables at a given temperature before the temperature is reduced, the total search time 
depends on the convergence time at each temperature. By partitioning the constraints into 
subsets, each subproblem only involves an exponentially smaller subspace with a small 
number of variables and penalties. Thus, each subproblem takes significantly less time to 
converge to an equilibrium state at a given temperature, and the total time for all the 
subproblems to converge is also significantly reduced. This reduction in complexity is 
experimentally validated in Section 5. 

3.3 Greedy ESPC Search Method (GEM) 
In this section, we present a dynamic penalty method based on a greedy search of an ESP. 
Instead of probabilistically accepting a probe as in CSA and CPSA, our greedy approach 
accepts the probe if it improves the value of the penalty function and rejects it otherwise. 
One simple approach that does not work well is to gradually increase α** until α** > α*, 
while minimizing the penalty function with respect to z using an existing local-search 
method. This simple iterative search does not always work well because the penalty 
function has many local minima that satisfy the second inequality in (13), but some of these 
local minima do not satisfy the first inequality in (13) even when α** > α*. Hence, the search 
may generate stationary points that are local minima of the penalty function but are not 
feasible solutions to the original problem. 
To address this issue, Figure 4 shows a global search called the Greedy ESPC Search Method 
[32] (GEM). GEM uses the following penalty function: 

 
(35) 

Lines 5-8 carries out Ng iterative descents in the z subspace. In each iteration, Line 6 
generates a probe z′ ∈  neighboring to z. As defined in (24) for CSA, we select z′ with 
uniform probability across all the points in . Line 7 then evaluates L g  ((z′, α)T ) and 

accepts z′ only when it reduces the value of L g . After the Ng  descents, Line 9 updates the 
penalty vector α in order to bias the search towards resolving those violated constraints. 
When α** reaches its upper bound during a search but a local minimum of L g  does not 
correspond to a CLMm of Pm, we can reduce α** instead of restarting the search from a new 
starting point. The decrease will change the terrain of L g  and “lower” its barrier, thereby 
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allowing a local search to continue in the same trajectory and move to another local 
minimum of L g . In Line 10, we reduce the penalty value of a constraint when its maximum 
violation is not reduced for three consecutive iterations. To reduce the penalties, Line 11 
multiplies each element in α by a random real number uniformly generated between 0.4 to 
0.6. By repeatedly increasing α** to its upper bound and by reducing it to some lower 
bound, a local search will be able to escape from local traps and visit multiple local minima 
of the penalty function. We leave the presentation of the parameters used in GEM and its 
experimental results to Section 5. 
 

 
Figure 4. Greedy ESPC search method (GEM). 

4. Asymptotic convergence of CSA and CPSA 
In this subsection, we show the asymptotic convergence of CSA and CPSA to a constrained 
global minimum in discrete constrained optimization problems. Without repeating the 
definitions in Section 1, we can similarly define a discrete nonlinear programming problem 
(Pd), a discrete neighborhood (Nd(y)), a discrete constrained local minimum (CLMd), a 
discrete constrained global minimum (CGMd), and a penalty function in discrete space (Ld). 

4.1 Asymptotic convergence of CSA 
We first define the asymptotic convergence property. For a global minimization problem, let  
Ω be its search space, Ωs be the set of all global minima, and ω(j) ∈ Ω, j = 0, 1, . . . , be a 
sequence of points generated by an iterative procedure ψ until some stopping conditions 
hold. 
Definition 8. Procedure ψ is said to have asymptotic convergence to a global minimum, or 

simply asymptotic convergence [2], if ψ converges with probability one to an element in Ωs; 
that is, lim ( ( ) ) 1sj

P jω
→∞

∈Ω = , independent of ω (0), where P(w) is the probability of event w. 

In the following, we first state the result on the asymptotic convergence of CSA to a CGMd of 
Pd with probability one when T approaches 0 and when T is reduced according to a specific 

cooling schedule. By modeling CSA by an inhomogeneous Markov chain, we show that the 
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chain is strongly ergodic, that the chain minimizes an implicit virtual energy based on the 
framework of generalized SA (GSA) [24, 23], and that the virtual energy is at its minimum at 
any CGMd. We state the main theorems without proofs [27] and illustrate the theorems by 
examples. 
CSA can be modeled by an inhomogeneous Markov chain that consists of a sequence of 
homogeneous Markov chains of finite length, each at a specific temperature in a cooling 
schedule. Its one-step transition probability matrix is PT = [PT (y, y′)], where: 

 

(36) 

Example 2. Consider the following simple discrete minimization problem: 

 
(37) 

where y ∈ Y = {0.5, 0.6,… , 1.2}. The corresponding penalty function is: 

 (38) 

By choosing α ∈ Λ = {2, 3, 4, 5, 6}, with the maximum penalty value αmax at 6, the state 
space is  states. At y = 0.6 or y = 1.0 where 
the constraint is satisfied, we can choose α* = 1, and any α** > α*, including αmax, would 
satisfy (13) in Theorem 1. 
In the Markov chain, we define Nd(y) as in (21), where  and  are as follows: 

 (39) 

 
(40) 

Figure 5 shows the state space S of the Markov chain. In this chain, an arrow from y to y′ 
∈Nd(y) (where y′ = (y′, α)T or (y, α′)T ) means that there is a one-step transition from y to y 
whose PT (y, y′) > 0. For y = 0.6 and y = 1.0, there is no transition among the points in the α 

dimension because the constraints are satisfied at those y values (according to (22)). 
There are two ESPs in this Markov chain at (0.6, 5)T and (0.6, 6)T , which correspond to the 
local minimum at y = 0.6, and two ESPs at (1.0, 5)T and (1.0, 6)T , which correspond to the 
local minimum at y = 1.0. CSA is designed to locate one of the ESPs at (0.6, 6)T and (1.0, 6)T . 
These correspond, respectively, to the CLMd at y* = 0.6 and y* = 1.0.                                          ■ 
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Let  and NL be the maximum of the minimum number 
of transitions required to reach yopt from all y ∈S. By properly constructing Nd(y), we state 
without proof that PT is irreducible and that NL can always be found. This property is 
illustrated in Figure 5 in which any two nodes can always reach each other. 
Let NT , the number of trials per temperature, be NL. The following theorem states the strong 
ergodicity of the Markov chain, where strong ergodicity means that state y of the Markov 
chain has a unique stationary probability πT (y). (The proof can be found in the reference 
[27].) 
 

 
 

Figure 5. The Markov chain with the transition probabilities defined in (36) for the example 
problem in (37) and the corresponding penalty-function value at each state. The four ESPs 
are shaded in (a). 

Theorem 3. The inhomogeneous Markov chain is strongly ergodic if the sequence of 
temperatures {Tk, k = 0, 1, 2, …} satisfies: 

 
(41) 

where  

Example 2 (cont’d). In the Markov chain in Figure 5,  ΔL = 0.411 and NL = 11. Hence, the 
Markov chain is strongly ergodic if we use a cooling schedule  Note that the 
cooling schedule used in CSA (Line 10 of Figure 1) does not satisfy the condition. 
Our Markov chain also fits into the framework of generalized simulated annealing (GSA) [24, 
23] when we define an irreducible Markov kernel PT (y, y′) and its associated communication 
cost v(y, y′), where  

 
(42) 

Based on the communication costs over all directed edges, the virtual energy W(y) (according 
to Definition 2.5 in [23, 24]) is the cost of the minimum-cost spanning tree rooted at y: 

 (43) 
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where G(y) is the set of spanning trees rooted at y, and V (g) is the sum of the 
communication costs over all the edges of g. 
The following quoted result shows the asymptotic convergence of GSA in minimizing W(i): 
Proposition 1 “(Proposition 2.6 in [14, 23, 24]). For every T > 0, the unique stationary 
distribution πT of the Markov chain satisfies: 

 
(44) 

where W(i) is the virtual energy of i, and 
 

 

 
       a) Virtual energy W(y)        b) Convergence prob. at (1, 6)T    c) Reachability prob. at (1, 6)T 

Figure 6. Virtual energy of the Markov chain in Figure 5a and the convergence behavior of 
CSA and random search at (1.0, 6)T . 

In contrast to SA that strives to minimize a single unconstrained objective, CSA does not 
minimize Ld((y, α)T ). This property is illustrated in Figure 5b in which the ESPs are not at 
the global minimum of Ld((y, α)T ). Rather, CSA aims to implicitly minimize W(y) according 
to GSA [24, 23]. That is, y*∈Yopt corresponds to y* = (y*, αmax)T with the minimum W(y), and 
W((y*, αmax)T ) < W((y, α)T ) for all y ≠ y* and α ∈ Λ and for all y = y* and α ≠ αmax. The 
following theorem shows that CSA asymptotically converges to y* with probability one. (See 
the proof in the reference [27].) 
Theorem 4. Given the inhomogeneous Markov chain modeling CSA with transition 
probability defined in (36) and the sequence of decreasing temperatures that satisfy (41), the 
Markov chain converges to a CGMd with probability one as k → ∞. 
Example 2 (cont’d). We illustrate the virtual energy W(y) of the Markov chain in Figure 5a 
and the convergence behavior of CSA and random search. 
One approach to find W(y) that works well for a small problem is to enumerate all possible 
spanning trees rooted at y and to find the one with the minimum cost. Another more 
efficient way adopted in this example is to compute W(y) using (44). This can be done by 
first numerically computing the stationary probability πT (y) of the Markov chain at a given 
T using the one-step transition probability PT (y, y′) in (36), where πT evolves with iteration k 
as follows: 

 (45) 
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until  In this example, we set ε = 10−16 as the stopping precision. Since 
, independent of the initial vector  , we set  

Figure 6a shows W((y, α)T) of Figure 5a. Clearly, Ld((y, α)T ) ≠ W((y, α)T ). For a given y, 

W((y, α)T ) is non-increasing as α increases. For example, W((0.6, 3)T ) = 4.44 ≥ W((0.6, 4)T ) 

= 4.03, and W((0.8, 2)T ) = 4.05 ≥ W((0.8, 6)T ) = 3.14. We also have W((y, α)T ) minimized at y 

= 1.0 when α = αmax = 6: W((0.6, 6)T ) = 3.37 ≥ W((0.8, 6)T ) = 3.14 ≥ W((1.0, 6)T) = 0.097. 

Hence, W((y, α)T ) is minimized at (y*, αmax)T = (1.0, 6)T , which is an ESP with the minimum 

objective value. In contrast, Ld((y, α)T ) is non-decreasing as α increases. In Figure 5b, the 

minimum value of Ld((y, α)T ) is at (1.2, 2)T , which is not a feasible point. 

To illustrate the convergence of CSA to y* = 1.0, Figure 6b plots  as a function of k, 
where y* = (1.0, 6)T . In this example, we set T0 = 1.0, NT = 5, and κ = 0.9 (the cooling schedule 
in Figure 1). Obviously, as the cooling schedule is more aggressive than that in Theorem 3, 
one would not expect the search to converge to a CGMd with probability one, as proved in 
Theorem 4. As T approaches zero, W(y*) approaches zero, and  monotonically 
increases and approaches one. Similar figures can be drawn to show that , y ≠ y*, 
decreases to zero as T is reduced. Therefore, CSA is more likely to find y* as the search 
progresses. In contrast, for random search,  is constant, independent of k. 
Note that it is not possible to demonstrate asymptotic convergence using only a finite 
number of iterations. Our example, however, shows that the probability of finding a CGMd 

improves over time. Hence, it becomes more likely to find a CGMd when more time is spent 
to solve the problem. 
Last, Figure 6c depicts the reachability probability  of finding y* in any of the first k 

iterations. Assuming all the iterations are independent,  is defined as: 

 
(46) 

The figure shows that CSA has better reachability probabilities than random search over the 
100 iterations evaluated, although the difference diminishes as the number of iterations is 
increased. 
It is easy to show that CSA has asymptotic reachability [2] of y*; that is,  

Asymptotic reachability is weaker than asymptotic convergence because it only requires the 
algorithm to hit a global minimum sometime during a search and can be guaranteed if the 
algorithm is ergodic. (Ergodicity means that any two points in the search space can be 
reached from each other with a non-zero probability.) Asymptotic reachability can be 
accomplished in any ergodic search by keeping track of the best solution found during the 
search. In contrast, asymptotic convergence requires the algorithm to converge to a global 
minimum with probability one. Consequently, the probability of a probe to hit the solution 
increases as the search progresses. 
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4.2 Asymptotic convergence of CPSA 
By following a similar approach in the last section on proving the asymptotic convergence 
of CSA, we prove in this section the asymptotic convergence of CPSA to a CGMd of Pd. 
CPSA can be modeled by an inhomogeneous Markov chain that consists of a sequence of 
homogeneous Markov chains of finite length, each at a specific temperature in a given 
cooling schedule. The state space of the Markov chain can be described by state 

, where y ∈Dw is the vector of problem variables and α and 

γ are the penalty vectors. 

According to the generation probability G(t)(y, y′) and the acceptance probability AT (y, y′), 
the one-step transition probability matrix of the Markov chain for CPSA is PT = [PT (y, y′)], 
where: 

 

(47) 

Let , and NL be the maximum of the minimum 
number of transitions required to reach yopt from all  Given {Tk, k = 0, 1, 2, …} that 
satisfy (41) and NT , the number of trials per temperature, be NL, a similar theorem as in 
Theorem 3 can be proved [8]. This means that state y of the Markov chain has a unique 
stationary probability πT (y). 
Note that ΔL defined in Theorem 3 is the maximum difference between the penalty-function 
values of two neighboring states. Although this value depends on the user-defined 
neighborhood, it is usually smaller for CPSA than for CSA because CPSA has a partitioned 
neighborhood, and two neighboring states can differ by only a subset of the variables. In 
contrast, two states in CSA can differ by more variables and have larger variations in their 
penalty-function values. According to (41), a smaller ΔL allows the temperature to be 
reduced faster in the convergence to a CGMd. 
Similar to CSA, (47) also fits into the framework of GSA if we define an irreducible Markov 
kernel PT (y, y′) and its associated communication cost v(y, y′), where  

 
(48) 

In a way similar to that in CSA, we use the result that any process modeled by GSA 
minimizes an implicit virtual energy W(y) and converges to the global minimum of W(y) 
with probability one. The following theorem states the asymptotic convergence of CPSA to a 
CGMd. The proof in the reference [27] shows that W(y) is minimized at (y*, αmax, γmax)T for 

some αmax and γmax. 
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Theorem 5. Given the inhomogeneous Markov chain modeling CPSA with transition 
probability defined in (47) and the sequence of decreasing temperatures that satisfy (41), the 
Markov chain converges to a CGMd with probability one as k → ∞. 
Again, the cooling schedule of CPSA in Figure 3 is more aggressive than that in Theorem 5. 

5. Experimental results on continuous constrained problems 
In this section, we apply CSA and CPSA to solve some nonlinear continuous optimization 
benchmarks and compare their performance to that of other dynamic penalty methods. We 
further illustrate the application of the methods on two real-world applications. 

5.1 Implementation details of CSA for solving dontinuous problems 
In theory, any neighborhoods 

1c
N (x) and 

2cN (α) that satisfy (21) and (22) can be used. In 

practice, however, appropriate neighborhoods must be chosen in any efficient 
implementation. 
In generating trial point x′ = (x′, α)T from x = (x, α)T where x′ ∈

1c
N (x), we choose x′ to 

differ from x in the ith element, where i is uniformly distributed in {1, 2,…, n}: 

 (49) 

and ⊗ is the vector-product operator. Here, e1 is a vector whose ith element is 1 and the other 

elements are 0, and θ is a vector whose ith element θ i is Cauchy distributed with density  

f d(x i) = and scale parameter i. Other distributions of θ i studied include uniform 

and Gaussian [30]. During the course of CSA, we dynamically update i using the following 
modified 1-to-1 rate rule [9] in order to balance the ratio between accepted and rejected 
configurations: 

 

(50) 

where pi is the fraction of x′ accepted. If pi is low, then too many trial points of x′ are rejected, 
and σi is reduced; otherwise, the trial points of x′ are too close to x, and i is increased. We 
set β0 = 7, β1 = 2, pu = 0.3, and pv = 0.2 after experimenting different combinations of 
parameters [30]. Note that it is possible to get somewhat better convergence results when 
problem-specific parameters are used, although the results will not be general in that case. 
Similarly, in generating trial point x′′ = (x, α′)T from x = (x, α)T where α′ ∈

2cN (α), we 

choose α′ to differ from α in the jth element, where j is uniformly distributed in {1, 2, …,m}: 

 (51) 
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Here, the jth element of e2 is 1 and the others are 0, and the νj is uniformly distributed in 
[−φj, φj ]. We adjust φj according to the degree of constraint violations, where: 

 (52) 

When hi(x) = 0 is satisfied, φi = 0, and αi does not need to be updated. Otherwise, we adjust 
φi by modifying wi according to how fast hi(x) is changing: 

 

(53) 

where η0 = 1.25, η1=0.95, τ0 = 1.0, and τ 1 = 0.01 were chosen experimentally. When hi(x) is 
reduced too quickly (i.e., hi(x) < τ 1T is satisfied), hi(x) is over-weighted, leading to a possibly 
poor objective value or difficulty in satisfying other under-weighted constraints. Hence, we 
reduce αi’s neighborhood. In contrast, if hi(x) is reduced too slowly (i.e., hi(x) > τ 0T is 
satisfied), we enlarge αi’s neighborhood in order to improve its chance of satisfaction. Note 
that wi is adjusted using T as a referenc because constraint violations are expected to 
decrease when T decreases. Other distributions of φj studied include non-symmetric 
uniform and non-uniform [30]. 
Finally, we use the cooling schedule defined in Figure 1, which is more aggressive than that 
in (41). We accept the x′ or x′′ generated according to the Metropolis probability defined in 
(25). Other probabilities studied include logistic, Hastings, and Tsallis [30]. We set the ratio 
of generating x′ and x′′ from x to be 20n to m, which means that x is updated more 
frequently than α. 
Example 3. Figure 7 illustrates the run-time behavior at four temperatures when CSA is 
applied to solve the following continuous constrained optimization problem: 

 

(54) 

The objective function f(x) is very rugged because it is made up of a two-dimensional Rastrigin 
function with 11n (where n = 2) local minima. There are four constrained local minima at the 
four corners denoted by rectangles, and a constrained global minimum at (−3.2,−3.2). 
Assuming a penalty function Lc((x, α)T )= f(x)+α1|(x1−3.2)(x1+3.2)|+α2|(x2−3.2)(x2+3.2)| and 
that samples in x are drawn in double-precision floating-point space, CSA starts from x = (0, 

0)T with initial temperature T0 = 20 and a cooling rate κ = 0.95. At high temperatures (e.g. 
T0 = 20), the probability of accepting a trial point is high; hence, the neighborhood size is 
large according to (50). Large jumps in the x subspace in Figure 7a are due to the use of the 
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Cauchy distribution for generating remote trial points, which increases the chance of getting 
out of infeasible local minima. Probabilistic ascents with respect to α also help push the 
search trajectory to feasible regions. As T is reduced, the acceptance probability of a trial 
point is reduced, leading to smaller neighborhoods. Finally, the search converges to the 
constrained global minimum at x*= (−3.2,−3.2)T.                                                                            ■ 
 

        
(a) T = 20         (b) T = 10.24 

       
(c) T = 8.192          (d) T = 0.45 

Figure 7. Example illustrating the run-time behavior of CSA at four temperatures in solving 
(54). 

 
                 a) TRIMLOSS                                b) ORTHREGC                          c) OPTCDEG3 

Figure 8. Strongly regular constraint-variable structures in some continuous optimization 
problems. A dot in each graph represents a variable associated with a constraint. 
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5.2 Implementation details of CPSA for solving continuous problems 
We have observed that the constraints of many application benchmarks do not involve 
variables that are picked randomly from their variable sets. Invariably, many constraints in 
existing benchmarks are highly structured because they model spatial and temporal 
relationships that have strong locality, such as those in physical structures, optimal control, 
and staged processing. 
Figure 8 illustrates this point by depicting the regular constraint structure of three 
benchmarks. It shows a dot where a constraint (with unique ID on the x axis) is related to a 
variable (with a unique ID on the y axis). When the order of the variables and that of the 
constraints are properly arranged, the figure shows a strongly regular constraint-variable 
structure. 
In CPSA, we follow a previously proposed automated partitioning strategy [26] for 
analyzing the constraint structure and for determining how th constraints are to be 
partitioned. The focus of our previous work is to solve the partitioned subproblems using an 
existing solver SNOPT [15]. In contrast, our focus here is to demonstrate the improvement of 
CPSA over CSA and on their asymptotic convergence property. 
Based on Pm with continuous variables and represented in AMPL [13], our partitioning 
strategy consists of two steps. In the first step, we enumerate all the indexing vectors in the 
AMPL model and select one that leads to the minimum Rglobal, which is the ratio of the 
number of global constraints to that of all constraints. We choose Rglobal as a heuristic metric 
for measuring the partitioning quality, since a small number of global constraints usually 
translates into faster resolution. In the second step, after fixing the index vector for 
partitioning the constraints, we decide on a suitable number of partitions. We have found a 
convex relationship between the number of partitions (N) and the complexity of solving Pm. 
When N is small, there are very few subproblems to be solved but each is expensive to 
evaluate; in contrast, when N is large, there are many subproblems to be solved although 
each is simple to evaluate. Hence, there is an optimal N that leads to the minimum time for 
solving Pm. To find this optimal N, we have developed an iterative algorithm that starts from 
a large N, that evaluates one subproblem under this partitioning (while assuming all the 
global constraints can be resolved in one iteration) in order to estimate the complexity of 
solving Pm, and that reduces N by half until the estimated complexity starts to increase. We 
leave the details of the algorithm to the reference [26]. 
Besides the partitioning strategy, CPSA uses the same mechanism and parameters described 
in Section 5.1 for generating trial points in the x, α, and γ subspaces. 

5.3 Implementation details of GEM for solving continuous problems 
The parameter in GEM were set based on the package developed by Zhe Wu and dated 
08/13/2000 [32]. In generating a neighboring point of x for continuous problems, we use a 
Cauchy distribution with density  for each variable xi, i = 1,…, n, where i 

is a parameter controlling the Cauchy distribution. We initialize each i to 0.1. For the last 50 
probes that perturb xi, if more than 40 probes lead to a decrease of Lm, we increase i by a 
factor of 1.001; if less than two probes lead to a decrease of Lm, we decrease i by a factor of 
1.02. We increase the penalty i for constraint hi by  where �i is set to 
0.0001 in our experiments. We consider a constraint to be feasible and stop increasing its 
penalty when its violation is less than 0.00001. 
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5.4 Evaluation results on continuous optimization benchmarks 
Using the parameters of CSA and CPSA presented in the previous subsections and 
assuming that samples were drawn in double-precision floating-point space, we report in 
this section some experimental results on using CSA and CPSA to solve selected problems 
from CUTE [7], a constrained and unconstrained testing environment. We have selected 
those problems based on the criterion that at least the objective or one of the constraint 
functions is nonlinear. Many of those evaluated were from real applications, such as 
semiconductor analysis, chemical reactions, economic equilibrium, and production 
planning. Both the number of variables and the number of constraints in CUTE can be as 
large as several thousand. 
Table 1 shows the CUTE benchmark problems studied and the performance of CPSA, CSA 
GEM in (35), P3 in (7), and P4 in (8). In our experiments, we have used the parameters of P3 
and P4 presented in Section 2.2. For each solver and each instance, we tried 100 runs from 
random starting points and report the average solution found (Qavg), the average CPU time 
per run of those successful runs (Tavg), the best solution found (Qbest), and the fraction of runs 
there were successful (Psucc). We show in shaded boxes the best Qavg and Qbest among the five 
solvers when there are differences. We do not list the best solutions of P3 and P4 because they 
are always worse than those of CSA, CPSA, and GEM. Also, we do not report the results on 
those smaller CUTE instances with less than ten variables (BT*, AL*, HS*, MA*, NG*, TW*, 
WO*, ZE*, ZY*) [30] because these instances were easily solvable by all the solvers studied. 
When compared to P3, P4, and GEM, CPSA and CSA found much better solutions on the 
average and the best solutions on most of the instances evaluated. In addition, CPSA and 
CSA have a higher success probability in finding a solution for all the instances studied. 
The results also show the effectiveness of integrating constraint partitioning with CSA. 
CPSA is much faster than CSA in terms of Tavg for all the instances tested. The reduction in 
time can be more than an order of magnitude for large problems, such as ZAMB2-8 and 
READING6. CPSA can also achieve the same or better quality and success ratio than CSA 
for most of the instances tested. For example, for LAUNCH, CPSA achieves an average 
quality of 21.85, best quality of 9.01, and a success ratio of 100%, whereas CSA achieves, 
respectively, 26.94, 9.13, and 90%. 
The nonlinear continuous optimization benchmarks evaluated in this section are meant to 
demonstrate the effectiveness of CSA and CPSA as dynamic penalty methods. We have 
studied these benchmarks because their formulations and solutions are readily available and 
because benchmarks on nonlinear discrete constrained optimization are scarce. These 
benchmarks, however, have continuous and differentiable functions and, therefore, can be 
solved much better by solvers that exploit such properties. In fact, the best solution of most 
of these problems can be found by a licensed version of SNOPT [15] (version 6.2) in less than 
one second of CPU time! In this respect, CSA and CPSA are not meant to compete with 
these solvers. Rather, CSA and CPSA are useful as constrained optimization methods for 
solving discrete, continuous, and mixed-integer problems whose constraint and objective 
functions are not necessarily continuous, differentiable, and in closed form. In these 
applications, penalty methods are invariably used as an effective solution approach. We 
illustrate in the following section the effectiveness of CSA for solving two real-world 
applications. 
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Table 1. Experimental results comparing CPSA, CSA, GEM, P3, and P4 in solving selected 
nonlinear continuous problems from CUTE. Each instance was solved by a solver 100 times 
from random starting points. The best Qavg (resp. Qbest) among the five solvers are shown in 
shaded boxes. ′−′means that no feasible solution was found in a time limit of 36,000 sec. All 
runs were done on an AMD Athlon MP2800 PC with RH Linux AS4. 
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5.5 Applications of CSA on two real-world applications 
Sensor-network placement optimization. The application involves finding a suitable 
placement of sensors in a wireless sensor network (WSN) [31, 33]. Given N sensors, the 
problem is to find their locations that minimize the false alarm rate, while maintaining a 
minimum detection probability for every point in a 2-D region A [34]: 

 
(55) 

where PD(x, y) denotes the detection probability of location (x, y), and PF denotes the false 
alarm rate over all locations in A. To compute PD and PF , we need to first compute the local 
detection probability 

iDP and the local false alarm rate 
iFP for each sensor i, i = 1,…,N, as 

follows: 

 
(56) 

 
(57) 

The probabilistic model is based on a Gaussian noise assumption [34], where bi, , a, and e 
are constants, and (xi, yi) is the coordinates of the ith sensor. After all the local decisions have 
been sent to a fusion center, the center will find that an event happens at (x, y) if a majority 
of the sensors have reported so. Therefore, we have the following equations: 

 
(58) 

 
(59) 

where S0 and S1 denote the set of nodes that, respectively, detect or do not detect an event. 
The functions in the above formulation are very expensive to evaluate. In fact, the cost for 
computing PD(x, y) is Θ(2n), since we need to consider all combinations of S0 and S1. The cost 
is so expensive that it is impossible to directly compute PD(x, y) or its derivatives. Thus, the 
problem has no closed form and without gradient information. Instead, a Monte-Carlo 
simulation is typically used to estimate PD(x, y) within reasonable time [34]. Previous work 
in WSN have solved this problem using some greedy heuristic methods that are ad-hoc and 
suboptimal [34]. 
We have applied CSA to solve (55) and have found it to yield much better solutions than 
existing greedy heuristics [34]. In our approach, we find the minimum number of sensors by 
a binary search that solves (55) using multiple runs of CSA. For example, in a 20 ×20 grid, 
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CSA can find a sensor placement with only 16 sensors to meet the given thresholds of PD ≥ 
95% and PF ≤ 5%, while a previous heuristic method [34] needs 22 sensors. In a 40×40 grid, 
CSA can find a sensor placement with only 28 sensors to meet the same constraints, while 
the existing heuristic method [34] needs 43 sensors. 
Synthesis of out-of-core algorithms. A recent application uses CSA to optimize the out-of-
core code generation for a special class of imperfectly nested loops encoding tensor 
contractions that arise in quantum chemistry computation [19]. In this task, the code needs 
to execute some large, imperfectly nested loops. These loops operate on arrays that are too 
large to fit in the physical memory. Therefore, the problem is to find the optimal tiling of the 
loops and the placement of disk I/O statements. 
Given the abstract code, the loop ranges, and the memory limit of the computer, the out-of-
core code-generation algorithm first enumerates all the feasible placements of disk 
read/write statements for each array. To find the best combination of placements of all 
arrays, a discrete constrained nonlinear optimization problem is formulated and provided 
as input to CSA. 
The variables of the problem include tile sizes and the placement variables. The constraints 
include the input-array constraints, which specify that the read statement for an input array 
can only be placed for execution before the statement where it is consumed. They also 
include the input-output-array constraints, which specify that the write statement for an 
output array can only be placed after the statement where it is produced. Lastly, there are a 
number of other intermediate-array constraints. 
Experimental measurements on sequential and parallel versions of the generated code show 
that the solutions generated by CSA consistently outperform previous sampling approach 
and heuristic equal-tile-size approach. When compared to previous approaches, CSA can 
reduce the disk I/O cost by a factor of up to four [19]. 

6. Conclusions 
We have reported in this chapter constrained simulated annealing (CSA) and constraint-
partitione simulated annealing (CPSA), two dynamic-penalty methods for finding 
constrained global minima of discrete constrained optimization problems. Based on the 
theory of extended saddle points (ESPs), our methods look for the local minima of a penalty 
function when the penalties are larger than some thresholds and when the constraints are 
satisfied. To reach an ESP, our methods perform probabilistic ascents in the penalty 
subspace, in addition to probabilistic descents in the problem-variable subspace as in 
conventional simulated annealing (SA). Because both methods are based on sampling the 
search space of a problem during their search, they can be applied to solve continuous, 
discrete, and mixed-integer optimization problems without continuity and differentiability. 
Based on the decomposition of the ESP condition into multiple necessary conditions [25], we 
have shown that many benchmarks with highly structured and localized constraint 
functions can be decomposed into loosely coupled subproblems that are related by a small 
number of global constraints. By exploiting constraint partitioning, we have demonstrated 
that CPSA can significantly reduce the complexity of CSA. 
We have shown the asymptotic convergence of CSA and CPSA to a constrained global 
minimum with probability one. The result is theoretically important because it extends SA, 
which guarantees asymptotic convergence in discrete unconstrained optimization, to that in 
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discrete constrained optimization. Moreover, it establishes a condition under which optimal 
solutions can be found in constraint-partitioned nonlinear optimization problems. 
Lastly, we illustrate the effectiveness of CSA and CPSA for solving some nonlinear 
benchmarks and two real-world applications. CSA and CPSA are particularly effective 
when the constraint and objective functions and their gradients are too expensive to be 
evaluated or are not in closed form. 
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1. Introduction 
During the past several decades, simulated annealing (Kirkpatrick et al., 1983) and the 
genetic algorithm (Holland, 1975; Goldberg, 1989) have been applied successfully by many 
authors to highly complex optimization problems in different fields of sciences and 
engineering. In spite of their successes, both algorithms suffer from some difficulties in 
convergence to the global optima. 
Suppose that we are interested in minimizing the function U(x) over a given space X. 
Throughout this article, U(x) is called the energy function in terms of physics. Simulated 
annealing works by simulating a sequence of distributions defined as 

 
where τk is called the temperature. The temperatures form a decreasing ladder τ1 >…> τk > … 
with τ1 being reasonably large such that the Metropolis-Hastings (MH) moves (Metropolis et 
al., 1953; Hastings, 1970) have a high acceptance rate at this level and lim

k→∞
τk = 0. It has 

been shown by Geman and Geman (1984) that the global minima of U(x) can be reached by 
simulated annealing with probability 1 if the temperature decreases at a logarithmic rate. In 
practice, this cooling schedule is too slow; that is, CPU times can be too long to be affordable 
in challenging problems. Most frequently, people use a linearly or geometrically decreasing 
cooling schedule, which can no longer guarantee the global minima to be reached. 
The genetic algorithm solves the minimization problem by mimicking the natural 
evolutionary process. A population of candidate solutions (also known as individuals), 
generated at random, are tested and evaluated for their energy values; the best of them are 
then bred through mutation and crossover operations; the process repeated over many 
generations, until an individual of satisfactory performance is found. The mutation 
operation is modeled by random perturbations of the individuals. The crossover operation 
is modeled by random perturbations of the couples formed by two individuals selected 
according to some procedure, e.g., a roulette wheel selection or a random selection. Through 
the crossover operation, the solution information distributed across the population can be 
effectively used in the minimization process. Schmitt (2001) showed that under certain 
conditions, the genetic algorithm can converge asymptotically to the global minima at a 
logarithmic rate in analogy to simulated annealing. 
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Quite recently, the stochastic approximation Monte Carlo (SAMC) algorithm (Liang et al., 
2007) has been proposed in the literature as a dynamic importance sampling technique. A 
remarkable feature of SAMC is that it possesses the self-adjusting mechanism and is thus 
not trapped by local energy minima. In this article, we consider applications of SAMC in 
optimization. Two modified versions of SAMC, annealing SAMC (Liang, 2007; Zhu et al., 
2007) and annealing evolutionary SAMC (Liang, 2008), are discussed. Both algorithms have 
inherited self-adjusting ability from the SAMC algorithm. The annealing SAMC algorithm 
works in the same spirit as the simulated annealing algorithm but with the sample space 
instead of temperature shrinking with iterations. The annealing evolutionary SAMC 
algorithm represents a further improvement of annealing SAMC by incorporating some 
crossover operators originally used by the genetic algorithm into its search process. Under 
mild conditions, both annealing SAMC and annealing evolutionary SAMC can converge 
weakly toward a neighboring set of global minima in the space of energy. The new 
algorithms are tested on two optimization problems with comparisons with simulated 
annealing and the genetic algorithm. The numerical results favor to the new algorithms. 
The remainder of this article is organized as follows. In Section 2, w describe the ASAMC 
and AESAMC algorithms and study their convergence. In Section 3, we illustrate the new 
algorithms with two function minimization problems, one has a rugged energy landscape 
and the other is a complex least square estimation problem encountered in economic 
research. In Section 4, we conclude the paper with a brief discussion. 

2. Annealing stochastic approximation Monte Carlo algorithms 
2.1 Stochastic approximation Monte Carlo 
Before describing the annealing SAMC algorithms, we first give a brief description of 
SAMC. In our description, some of the conditions have been slightly modified from those 
given in Liang et al. (2007) to make the algorithm more suitable for solving optimization 
problems. Suppose that we are working with the following Boltzmann distribution, 

 
(1) 

where Z is the normalizing constant, τ is the temperature, and X is the sample space. For the 
reason of mathematical simplicity, we assume that X is compact. This assumption is 
reasonable, because for optimization problems we are usually only interested in the 
optimizers instead of samples drawn from the whole sample space and we have often some 
rough ideas where the optimizers are. Furthermore, we suppose that the sample space has 
been partitioned according to the energy function into m disjoint subregions denoted by  
E1 = {x : U(x) ≤ u1}, E2 = {x : u1 < U(x) ≤ u2}, ..., Em−1 = {x : um−2 < U(x) ≤ um−1}, and Em = {x : U(x) 
> um−1}, where u1, . . . , um−1 are real numbers specified by the user. Let ψ(x) be a non-negative 

function defined on the sample space with 0 < ∫ X ψ (x)dx < ∞, and gi = ∫ Ei ψ(x)dx. In practice, 

we often set ψ(x)= exp{−U(x)/τ}. 
SAMC seeks to draw samples from each of the subregions with a pre-specified frequency. If 
this goal can be achieved, then the local-trap problem can be avoided successfully. Let x(t+1) 
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denote a sample drawn from a MH kernel K
( )tθ

(x(t),· ) with the proposal distribution  
q(x(t),· ) and the stationary distribution 

 
(2) 

where θ (t) = (θ ( )
1

t , . . . , θ ( )t
m ) is an m-vector in a space . 

Let π = (π1, . . . , πm) be an m-vector with 0 < πi < 1 and 1
m
i=∑  πi = 1, which defines a desired 

sampling frequency for the subregions. Henceforth, π will be called the desired sampling 
distribution. Define H(θ(t), x(t+1)) = (e(t+1) − π), where e(t+1) = (

( 1)

1

t

e
+

, . . . , 
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( 1)t
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= 1 if 
x(t+1) ∈ Ei and 0 otherwise. Let {γt} be a positive non-decreasing sequence satisfying the 
conditions, 

 
(3) 

for some δ ∈ (1, 2). In this article, we set 

0

0max( , )t

t
t t

η

γ
⎛ ⎞

= ⎜ ⎟
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 (4) 

for some specified values of t0 > 1 and η ∈ (
1

2
, 1]. A large value of t0 will allow the sampler 

to reach all subregions very quickly even for a large system. Let J(x) denote the index of the 
subregion the sample x belongs to. With above notations, one iteration of SAMC can be 
described as follows. 
SAMC algorithm: 
i. Generate x(t+1) ~ ( )tK

θ
(x(t),· ) with a single Metropolis-Hastings simulation step: 

(i.1) Generate y according to the proposal distribution q(x(t), y). 
(i.2) Calculate the ratio 

 
 

(i.3) Accept the proposal with probability min(1, r). If it is accepted, set x(t+1) = y; 
otherwise, set x(t+1) = x(t). 

ii. Set θ* = θ (t) + γtH(θ (t), x(t+1)), where γt is called the gain factor. 
iii. If θ* ∈ Θ, set θ (t+1) = θ*; otherwise, set θ (t+1) = θ* + c*, where c* = (c*, . . . , c*) and c* is 

chosen such that θ* + c* ∈ . 
A remarkable feature of ASAMC is its self-adjusting mechanism. If a proposal is rejected, 
the weight of the subregion that the current sample belongs to will be adjusted to a larger 
value, and thus the proposal of jumping out from the current subregion will less likely be 
rejected in the next iteration. This mechanism warrants that the algorithm will not be 
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trapped by local minima. This is very important for the systems with multiple local energy 
minima. 
The parameter space  is set to [−B, B]m with B being a huge number e.g., 10100, which, as 
a practical matter, is equivalent to setting B = Rm. In theory, this is also fine. As implied by 

Theorem 5.4 of Andrieu et al. (2005), the varying truncation of θ*can only occur a finite 
number of times, and thus {θ (t)} can be kept in a compact space during simulations. Note 
that ( ) tf

θ
(x) is invariant with respect to a location transformation of θ (t)—that is, adding to 

or subtracting a constant vector from θ (t) will not change ( )tf
θ

(x). 

The proposal distribution q(x, y) used in the MH moves satisfies the minorisation condition, 
i.e., 

 
(5) 

The minorisation condition is a natural condition in study of MCMC theory (Mengersen and 
Tweedie, 1996). In practice, this kind of proposals can be easily designed for both discrete 
and continuous problems. Since both  and X are compact, a sufficient design for the 
minorisation condition is to choose q(x, y) > 0 for all x, y ∈ X. For example, for a continuous 
problem, q(x, y) can be chosen as a random walk Gaussian proposal y ~ N(x, σ 2) with σ 2 

being calibrated to have a desired acceptance rate. Issues on implementation of the 
algorithm, such as how to partition the sample space, how to choose the gain factor 
sequence, and how to set the number of iterations, have been discussed at length in Liang et 
al. (2007). 
SAMC falls into the category of stochastic approximation algorithms (Benveniste et al.,1990; 
Andrieu et al., 2005). The convergence of this algorithm can be extended from a theorem 
presented in Liang et al. (2007). Under mild conditions, we have 

 

(6) 

as t →∞ , where C is an arbitrary constant, π0 = { : 0}ij i E∈ =∑ πj /(m−m0), and m0 = #{i : Ei = ;} is 

the number of empty subregions. A subregion Ei is called empty if 
iE∫ ψ (x)dx = 0. In SAMC, 

the sample space partition can be made blindly by simply specifying some values of  
u1, . . . , um−1. This may lead to some empty subregions. The constant C can be determined by 

imposing a constraint on θ (t), say, 
( )

1

t
im

i eθ=∑  is equal to a known number. 

Let ( )ˆ t
iπ =P(x(t) ∈ Ei) be the probability of sampling from the subregion Ei at iteration t. 

Equation (6) implies that as t →∞, ( )ˆ t
iπ  will converge to πi + π0 if Ei ≠ 0 and 0 otherwise. With 

an appropriate specification of π, sampling can be biased to the low energy subregions to 
increase the chance of finding the global energy minima. 
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The subject of stochastic approximation was founded by Robbins and Monro (1951). After 
five decades of continual development, it has developed into an important area in systems 
control and optimization. Many of the neural network training algorithms, such as the 
simultaneous perturbation stochastic approximation algorithm (Spall, 1992), the Widrow 
Hoff algorithm (also known as the “least mean square” algorithm) (Haykin, 1999, pp.128-
135), the Alopex algorithm (Harth & Tzanakou, 1974) and self-organizing maps (Kohonen, 
1990), can be regarded as special instances of stochastic approximation. Refer to Bharath & 
Borkar (1999) for more discussions on this issue. Recently, stochastic approximation has 
been used with Markov chain Monte Carlo for solving maximum likelihood estimation 
problems (Gu & Kong, 1998; Delyon et al., 1999). The critical difference between SAMC and 
other stochastic approximation algorithms is at sample space partitioning. Sample space 
partitioning improves the performance of stochastic approximation in optimization. It forces 
each non-empty subregion to be visited with a fixed frequency, and thus increases the 
chance to locate the global energy minimizer. 

2.2 Annealing stochastic approximation Monte Carlo 
Like conventional Markov chain Monte Carlo algorithms, SAMC is able to find the global 
energy minima if the run is long enough. However, due to the broadness of the sample 
space, the process may be slow even when sampling has been biased to low energy 
subregions. To accelerate the search process, we shrink the sample space over iterations. As 
argued below, this modification preserves the theoretical property of SAMC when a global 
proposal distribution is used. 
Suppose that the subregions E1, . . . ,Em have been arranged in ascending order by energy; 
that is, if i < j, then U(x) < U(y) for any x ∈ Ei and y ∈ Ej . Let ϖ(u) denote the index of the 
subregion that a sample x with energy u belongs to. For example, if x ∈ Ej , then ϖ (U(x)) = j. 
Let X(t) denote the sample space at iteration t. Annealing SAMC initiates its search in the 

entire sample space X0 = 1

m

ii
E

=∪ , and then iteratively searches in the set 

 

(7) 

where ( )
min

tU  is the best energy value obtained until iteration t, and ℵ > 0 is a user specified 
parameter which determines the broadness of the sample space at each iteration. Since the 
sample space shrinks iteration by iteration, the algorithm is called annealing SAMC. In 
summary, the ASAMC algorithm consists of the following steps: 
ASAMC algorithm: 
a) (Initialization) Partition the sample space X into m disjoint subregions E1, . .. ,Em 

according to the objective function U(x); specify a desired sampling distribution π; 
initialize x(0) by a sample randomly drawn from the sample space X, θ (0) = ( (0)

1θ , . . . , 
(0)
mθ  ) = (0, 0, . . . , 0), ℵ, and X0 = 1

m

ii
E

=∪ ; and set the iteration number t = 0. Let  be a 

compact subset in Rm, θ (0) = ( (0)
1θ , . . . , (0)

mθ  ) = (0, 0, . . . , 0), and θ (0) ∈ . 
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b) (Sampling) Update the current sample x(t) by a single or few MH moves which admit 
the following distribution as the invariant distribution, 

 

(8) 

where I(x ∈ Ei) is the indicator function, θ (t) i is a working weight associated with the 
subregion Ei, ψ(x) = exp{−U(x)/τ} is an unnormalized Boltzmann density, and τ is a user-
specified parameter. Denote the new sample by x(t+1). 

c) (Working weight updating) Update the working weight θ (t) as follows: 

 
where γt is called the gain factor. If θ* ∈  , set θ (t+1) = θ*; otherwise, set θ (t+1) = θ* + c*, 
where c* = (c*, . . . , c*) and c* is chosen such that θ* + c* ∈  

d) (Termination Checking) Check the termination condition, e.g., a fixed number of 
iterations or an optimal solution set have been reached. Otherwise, set t ←t + 1 and go 
to step (b). 

It has been shown in Liang (2007) that if the gain factor sequence satisfie (3) and the 
proposal distribution satisfies the minorisation condition (5), ASAMC can converge weakly 
toward a neighboring set of the global minima of U(x) in the space of energy. More 
precisely, the sample x(t) converges in distribution to a random variable with the density 
function 

 
(9) 

where umin is the global minimum value of U(x), 'iπ = πi+(1 − { : 0, 1,..., )}minkj k E k u +∈ ≠ =∑ ϖ( ℵ πi)/m0, 

m0 is the cardinality of the set {k : Ek ≠ 0, k = 1, . . . ,ϖ(umin + ℵ)}, and 0 denotes an empty set. 

The subregion Ei is called empty if 
iE∫ ψ (x)dx = 0. An inappropriate specification of ui’s may 

result in some empty subregions. ASAMC allows for the existence of empty subregions in 
simulations. 

2.3 Annealing evolutionary stochastic approximation Monte Carlo 
Like the genetic algorithm, AESAMC also works on a population of samples. Let x = (x1, . . . 
,xn) denote the population, where n is the population size, and xi = (xi1, . . . , xid) is a d-
dimensional vector called an individual or chromosome in terms of genetic algorithms. 
Thus, the minimum of U(x) can be obtained by minimizing the function U(x) = 1

n
i=∑ U(xi). 

An unnormalized Boltzmann density can be defined for the population as follows, 

 (10) 
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where Xn = X ×· · ·×X is a product sample space. The sample space can be partitioned 

according to the function U(x) into m subregions: E1 = {x : U(x) ≤ u1}, E2 = {x : u1 < U(x) ≤u2}, . 

. ., Em−1 = {x : um−2 < U(x) ≤ um−1}, and Em = {x : U(x) > um−1}, where u1, . . . , um−1 are m − 1 

known real numbers. As in ASAMC, we suppose that the subregions have been arranged in 
ascending order by the function U(x). We note that here the sample space is not necessarily 
partitioned according to the function U(x), for example, λ(x) = min{U(x1), . . . ,U(xn)} is also a 
good choice. The population can then evolve under the framework of ASAMC with an 
appropriate specification of the proposal distribution for the MH moves. At iteration t, the 
MH moves admit the following distribution as the invariant distribution, 

 

(11) 

where ( )
min

tU  denotes the best value of U(x) obtained by iteration t. As discussed before, {θ(t)} 
can be kept in a compact space in simulations.  
Since, in AESAMC, the state of the MH chain has been augmented to a population, the 
crossover operators used in the genetic algorithm can be employed to accelerate the 
evolution of the population. However, to satisfy the Markov chain reversibility condition, 
these operators need to be modified appropriately. As demonstrated by Liang and Wong 
(2000, 2001), Goswami and Liu (2007), and Jasra et al. (2007), incorporating genetic type 
moves into Markov chain Monte Carlo can often improve the mixing rate of the simulation. 
Note that the crossover operators used in these work may not be suitable for AESAMC, 
because asymptotic independence between individuals is required to be remained in the 
operations. Whilst this is not required in AESAMC. The sample space partition makes the 
individuals dependent on each other, although ψ(x) is defined as a product of the functions 

ψ(xi), i = 1, . . . , n. The crossover operators used in AESAMC can be described as follows. 
K-Point Crossover This proposal is the same as that used in Liang and Wong (2001). To 
make the article self-contained, it is briefly described as follows. Two chromosomes, say xi 

and xj with i < j, are selected from the current population x according to some selection 
procedure as parental chromosomes and two offspring chromosomes ix' and jx'  are 
generated as follows: sample K integer crossover points without replacement from the set  
{1, . . . , d−1}; sort these points in ascending order; and construct offspring chromosomes by 
swapping the genes of the parental chromosomes between each odd and the next even 
crossover points (d is set as an additional crossover point when K is odd). The new 
population can then be formed as x’ = (x1, . . . , xi−1, ix' , xi+1, . . . , xj−1, jx' , xj+1, . . . , xn). In this 
article, 1 and 2-point crossover operators are applied equally when the K point crossover 
operator is selected in simulations. An extreme case of the K-point crossover is the uniform 
crossover, in which each element of ix'  (i.e., genotype) is randomly chosen from the two 
corresponding elements of the parental chromosomes and the corresponding element of 

,
jx is assigned to the element not chosen by x0i. 
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Throughout this article, the parental chromosomes for the K-point crossover operator are 
selected as follows. The first parental chromosome is selected from the current population 
according to the distribution 

 
(12 

where τs is the selection temperature. In this article, we set τs = τ / 10. Let xi denote the first 
parental chromosome. The second parental chromosome is then selected from the 
subpopulation x \ {xi} according to the distribution 

 
(13) 

For a given pair of chromosomes (xi, xj ), the selection probability is Ps(xi, xj |x) = w1(xi)w2(xj 

|xi)+ w1(xj)w2(xi|xj ). 
To have the distribution (11) invariant with respect to the crossove operation, the acceptance 
of the new population x’ should be moderated by the MH rule; that is, accepting x’with 
probability 

 (14) 

where the transition probability ratio is  

 
Snooker Crossover This operator proceeds as follows: 
a) Randomly select one chromosome, say xi, from the current population x. 
b) Select the other chromosome, say, xj , from the subpopulation x \ {xi} according to the 

distribution w2(x|xi) as defined in (13). 
c) Let e = (xj − xi)/║xj − xi║, and let ix' = xi + re, where r is a random variable drawn for a 

normal distribution 2(0, )cN σ with the standard deviation σc being calibrated such that 
the operation has a reasonable overall acceptance probability. 

d) Construct a new population x’ by replacing xi with the offspring ix' , and accept the new 
population with probability min{1, ( )tθ

f (x’)/ ( )tθ
f (x)}. For this operator, the transition 

probability ratio is 1; that is, T(x→x’) = T(x’→x). 
We note that this operator is a little different from the the snooker sampler described in 
Gilks et al. (1994) and the snooker crossover operator described in Liang and Wong (2001), 
where xi is required to be independent of other individuals and the operation is required to 
leave the marginal distribution of xi invariant. These requirements are waived here because 
AESAMC allows for the dependence among the individuals. 
Linear Crossover This operator has the same procedure with the snooker crossover operator 
except that step (c) is changed as follows. 

(c) Set ix'  = xi + rxj , where r ~ Unif [−1, 1]. 
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This operator is designed for exploration of the triangular region between xi and xj and that 
between xi and −xj . 
Mutation In addition to the crossover operators, AESAMC also needs some mutation 
operators. Since the population size can be large, we here assume that the population is 
updated in the style of the Gibbs sampler, individual by individual, or component by 
component by viewing the population as a long vector. Furthermore, we assume that the 
mutation operator satisfies the minorisation condition 

 
(15) 

where x[−i] = (x1, . . . , xi−1, xi+1, . . . , xn) and q(xi → ix' |x[−i]) denotes the proposal distribution 
use for updating xi. Note that the condition (15) can be further relaxed for AESAMC, 
requiring the inequality holds for any components of xi. Since both X and  are compact, it 
is easy to verify that the mutation operators described below satisfy the minorisation 
condition. 
Two types of mutation operators, MH-Gibbs mutation and point mutations, are used in this 
article. The MH-Gibbs mutation, also called the “Metropolis-within-Gibbs” sampler (Müller, 
1991) or the hybrid MCMC sampler (Robert & Casella, 2004, pp.393), proceeds as follows. 
For i = 1, . . . , n, given the population  
a) Generate a random direction vector e from a uniform distribution on the surface of a 

unit d-dimensional hypersphere. 
b) Generate a random number r ~ N(0, 2

mσ ) and set ix'  = ( )t
ix + re, where σm is calibrated 

such that the operator has a reasonable overall acceptance rate. 
c) Construct a new population by replacing ( )t

ix with ix' , accept the new population 
according to the MH rule as in the snooker crossover, and denote the new population 
by x(t+1,i). 

For the reason of mathematical simplicity, we keep the working weights ( ( )
1

tθ , . . . , ( )t
mθ ) 

unchanged in the cycle of the MH-Gibbs mutation. If the vector e used in step (b) is a (0,1)-
binary vector with the positions of nonzero elements being selected randomly, the above 
operator is called the point mutation operator. If the total number of nonzero elements in e is 
K, then the operator is called the K-point mutation operator. In this article, 1 and 2-point 
mutation operators are applied equally when the K-point mutation operator is selected in 
simulations. Let σp denote the step size of the K-point mutation; that is, the operator can be 
expressed as ijx'  = ( )t

ijx + rjej for j = 1, . . . , d, where rj is a random number drawn from the 

normal N(0, 2
pσ ) and σp is called the step size of the operator. 

AESAMC Algorithm Let ρ1, . . . , ρ5, 0 < ρi < 1 and 5
1i=∑ ρi = 1, denote the respective 

probabilities for the MH-Gibbs mutation, K-point mutation, K point crossover, snooker 
crossover, and linear crossover operators to work at each iteration. In this article, we set  
ρ1 = ρ2 = 0.05 and ρ3 = ρ4 = ρ5 = 0.3. The AESAMC algorithm can be summarized as follows. 
AESAMC algorithm: 
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a) (Initialization) Partition the sample space Xn into m disjoint subregions E1, . . . ,Em; 

choose the threshold value ℵ and the working probabilities ρ 1, . . . , ρ 5; initialize a 
population x(0) at random; and set θ (0) = ( (0)

1θ  , . . . , (0)
mθ ) = (0, 0, . . . , 0), 0

nX = 1

m

ii=∪ E , 
(0)
minU  = U (x(0)) and t = 0. 

b) (Sampling) Update the current population x(t) using the MH-Gibbs mutation, K-point 
mutation, K-point crossover, snooker crossover, and linear crossover operators 
according to the respective working probabilities. 

c) (Working weight updating) Update the working weight θ (t) by setting 

 
where Hi(θ(t), x(t+1)) = I(x(t+1) ∈ Ei) − πi for the crossover operators, and Hi(θ (t), x(t +1)) =  

1
n
j=∑  I(x(t +1,j) ∈ Ei)/n − πi for the mutation operators. If θ * ∈ , set θ ( t +1) = θ *; 

otherwise, set θ ( t +1) = θ * + c *, where c * = (c *, . . . , c *) and c * is chosen such that θ * + c 
* ∈ . 

d) (Termination Checking) Check the termination condition, e.g., a fixed number of 
iterations or an optimal solution set have been reached. Otherwise, set t → t + 1 and go 
to step (b). 

It has been shown in Liang (2008) that if the mutation operator satisfies the minorisation 
conditio (5) and the gain factor sequence satisfies (3), AESAMC also converges weakly 
toward a neighboring set of global minima of U(x) in the space of energy. 

2.4 Practical issues 
Liang et al. (2007) discussed practical issues on implementation of SAMC Some rules 
developed there, e.g., those on sample space partitioning and convergence diagnostic, are 
still applicable to ASAMC and AESAMC. Briefly speaking, the sample space should be 
partitioned such that the MH moves within the same subregion have a reasonable 
acceptance rate. In this article, the sample space is partitioned such that each subregion has 
an equal energy bandwidth Δu, i.e., ui+1 − ui ≡Δu for all i = 1, . . . ,m − 1. To ensure that the 
moves within the same subregion have a reasonable acceptance rate, it is set Δu = 0.2τ. The 
convergence can be diagnosed by examining the difference of the patterns of the working 
weights obtained in multiple runs. In the below, we discuss three more issues related to 
ASAMC and AESAMC. 
• On the choice of π. Liang et al. (2007) suggest to set π biased to the low energy regions if 

one aims at minimization. However, this is different for ASAMC and AESAMC, as it 
includes an extra parameter, namely, ℵ, to control its search space at each iteration. In 
our experience, a uniform setting is often better than a low-energy biasing setting in 
terms of efficiency of the two algorithms, especially when ℵ is small. Under the 
uniform setting, the system has more chances to visit higher energy regions, and thus 
has more chances to transit between disconnected regions. In this chapter, we set π to be 
uniform over all subregions, i.e., π1 = … = πm = 1/m, in all computations. 

• On the choice of ℵ, T0 and N, where N denotes the total number of iterations. Since ℵ 
determines the size of the neighboring set toward which ASAMC and AESAMC 
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converge, ℵ should be chosen carefully for better efficiency of the algorithms. If ℵ is too 
small, it may take a long time for the algorithms to locate the global minima. In this 
case, the sample space may contain a lot of separated regions, and most of the proposed 
transitions will be rejected if the proposal distribution is not spread enough. If ℵ is too 
large, it may also take a long time for the algorithms to locate the global energy 
minimum due to the broadness of the sample space. In principle, the value of ℵ should 
be chosen according to the roughness of the energy function. The rougher the energy 
function is, the larger value of ℵ one should choose. A large value of ℵ should associate 
with a large value of T0, as a larger value of T0 means faster transitions over the entire 
sample space. In practice, the values of ℵ, T0 and N can be determined through a trial 
and error process based on the diagnosis for the convergence of the algorithms. If they 
fail to converge, the parameters should be tuned to larger values. Finally, we point out 
that due to the population effect, AESAMC can often work with a smaller value of ℵ 
than ASAMC. 

• On the choice of population size for AESAMC. The genetic algorithm often works with 
a large population, because the crossover operation is the key to its efficiency. In 
AESAMC, the crossover operator has been modified to serve as a proposal for the MH 
moves, and it is no longer as critical as to the genetic algorithm. In AESAMC, the 
population size is usually set to a moderate number, ranging from 5 to 50. As known by 
many people, the crossover operation favors to high dimensional problems. 

3. Numerical examples 
3.1 A multiple local minima problem 
To illustrate ASAMC, we consider minimizing the following function on [−1.1, 1.1]2: 
 

 
 

whose global minimum is -8.12465 attained at (x1, x2) = (−1.0445,−1.0084) and 
(1.0445,−1.0084) This example is identical to Example 6.1 of Liang (2005). Figure 1 shows 
that U(x) has a multitude of local energy minima separated by high-energy barriers. 
Since the dimension of the problem is low, AESAMC was not applied to this example. In 
applyin ASAMC to this example, we partitioned the sample space into 41 subregions with 
an equal energy bandwidth: E1 = {x ∈ X : U(x) ≤ −8.0}, E2 = {(x) ∈ X : −8.0 < U(x) ≤ −7.8}, . . ., 
and E41 = {(x) ∈ X : −0.2 < U(x) ≤ 0}, set ψ(x) = exp(−U(x)/0.1), t0 = 100, and ℵ = 6, and choose 
the proposal distribution as N2(x, 0.32I2), where Id denotes an identity matrix of size d by d. 
The algorithm was run for 50000 iterations, and 500 samples were collected at equally 
spaced time intervals. 
For comparison, SAMC and SA were also applied to this example. SAMC was run for 50000 
iterations with the same setting as ASAMC (the parameter ℵ does not exist in SAMC), and 
500 samples were collected at equally spaced time intervals. For SA, we tried the linear and 
geometric cooling schedules. 
a) Linear. The temperature decreases linearly, i.e., 

Tk = Tk−1 − � l, k = 1, . . . ,K, 

where � l = (T1 − TK)/(K − 1). 
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Figure 1. Grid (a) and contour (b) representations of the function U(x) on [−1.1, 1.1]2. This 
figure characterizes multiple local minima problems. 

b) Geometric. The temperature decreases geometrically with a constant rate, i.e., 

Tk = �eTk−1, k = 1, . . . ,K, 

where �e = exp{(log TK − log T1)/(T − 1)}. 
In all simulations, we set the total number of temperature levels K = 500, and set the number 
of iterations performed at each temperature level to Nk = N/K, where N is the total numbers 
of iterations of a run. For this example, we set T1 = 10, T500 = 0.01 and N = 50000 for both 
cooling schedules. The resulting values of �l and �e are 0.02 and 0.986, respectively. The 
proposal distribution used at level k is N(xt, 0.12TkI2). In each run, 500 samples were collected 
at equally spaced time intervals. 
Figure 2 shows the evolving paths of the samples collected in the above runs. It is 
remarkable that ASAMC is ergodic as shown by Figure 2(a). Even though the sample space 
has been restricted to four isolated regions (four corners) by the choice of ℵ, successful 
transitions between different regions can still be made due to the use of the global proposal 
distribution. This also explains why a widely spread proposal distribution is preferred in 
ASAMC. Comparing to the sample path of SAMC, we can see that in ASAMC, sampling is 
more focused on the low energy regions. Hence, ASAMC is potentially more efficient than 
SAMC in optimization. 
Figures 2(c) and 2(d) show that at high temperatures, SA results in a random walk in the 
sample space; and that at low temperatures, SA tends to get trapped in a local minimum. 
Note that the linear cooling schedule contains more high temperature levels than the 
geometric cooling schedule. The sample paths of SA are significantly different from those of 
SAMC and ASAMC. The central part of the sample space (Figure 1(b)) has a big area, which 
is about half of the total area of the sample space, but it is seldom visited by ASAMC and 
SAMC. However, this part is visited by SA frequently with both linear and geometric 
cooling schedules. The reason is that SA tends to have a random walk in the sample space at 
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high temperatures, whereas ASAMC (so is SAMC) tends to have a random walk in the 
space of subregions, if each subregion is regarded as a single point. This implies that 
potentially ASAMC can overcome any barriers on the energy landscape and locate global 
energy minima quickly. Figure 2 shows that during the above runs SAMC and ASAMC 
have located the global energy minima many times, whilst SA has only located them a few 
times. 
 

 
Figure 2. Sample paths of the ASAMC, SAMC and SA samples. The circles in the plots show 
the locations of the two global energy minima. (a) Sample path of ASAMC. (b) Sample path 
of SAMC. (c) Sample path of SA with the linear cooling schedule. (d) Sample path of SA 
with the geometric cooling schedule. This figure characterizes the performance of ASAMC 
for multiple local minima problems: it is capable of transiting between different local 
minimum regions. 
To compare efficiency of ASAMC, SAMC and SA in global optimization, we conducted the 
following experiment. Each algorithm was run 1000 times independently. Each run 
consisted of 20000 iterations. ASAMC and SAMC were run under the same setting as used 
above except that the proposal distribution was changed to N2(x, 0.12I2). This change would 
force them to move more locally and thus to have more chances to locate the global energy 
minima. The proposal distribution used in SA has already been fine enough, and was not 
changed in this experiment. The numerical results are summarized in Table 1. The 
comparison shows that both ASAMC and SAMC are superior to SA for this example. Note 
that in all runs of the three algorithms, the total numbers of iterations were the same, and 
they cost about the same CPU times because the CPU time cost by each iteration is 
dominated by the part used for energy evaluation. This is especially true for more 
complicated problems, e.g., the neural network training problems studied in Liang (2007). 
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Table 1: Comparison of the SAMC, ASAMC, and SA algorithms for the multiple local 
minima example. Notations: let zi denote the minimum energy value obtained in the ith run 
for i = 1, . . . , 1000, “Mean” is the average of zi, “SD” is the standard deviation of “Mean”, 
“Minimum”= 1000

1min i=  zi, “Maximum”= 1000
1max i= zi, and “Proportion”= #{i : zi ≤ −8.12}. The 

cooling schedules used in SA-1 and SA-2 are linear and geometric, respectively. 

3.2 Rational-expectations model 
To illustrate the performance of AESAMC, we consider the following example, which is 
specified by the system of equations, 

 

(16) 

where α = (α11, α12, α13, α21, α22, α23), β = (β11, β12, β21, β22), γ = (γ1, γ2, γ3), Λ = [1 − β12β21(1 − 

β11)(1 − β22)]−1, and 
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The parameters (α,β,γ) can be estimated by minimizing the function 

 
 
                                                                                                                                                             (17) 
on the space: |αij | ≤ 10, |βij |≤ 10, |γi|≤ 1 and |x0i|≤ 10. 
This example is constructed by Dorsey & Mayer (1995) based on the rational-expectations 
model encountered in economic research (Hoffman & Schmidt, 1981). Following Dorsey & 
Mayer (1995), we use a dataset consisting of 40 observations simulated under the 
specifications: αij = 1 and βij = 0.2 for all i and j, γ1 = 0.1, γ2 = 0.2, γ3 = 0.8, ∈t1 ~ N(0, 252), ∈t2 ~  
N(0, 1), ut1 ~  N(0, 362), Uu2 ~  N(0, 42), and ut3 ~  N(0, 92). Dorsey and Mayer (1995) assessed 
the computational difficulty of this problem by running the Marquardt-Levenberg gradient 
algorithm from 50 different randomly chosen points in the search space. In 49 out of 50 runs, 
the Marquardt-Levenberg algorithm failed to converge because of either singularities or 
floating-point overflow, and on the one run that did converge was discovered to be 
suboptimal. 
AESAMC was first applied to this example with the following specifications: the 
temperature τ = 100, the population size n = 25, the mutation step sizes σm = σp = 1.5, the 
snooker crossover step size σc = 1, the threshold value ℵ= 5000, the gain factor scale  
T0 = 20000, and total number of iterations N = 5 × 106. To examine the performance of 
AESAMC in a long run, we set N to a large number. The algorithm was run 20 times. On 
average, each run requires 1.85 × 107 function evaluations and about 180s CUP time on a 
2.8GHZ computer. The results are summarized in Table 2 and Figure 3. To assess the 
robustness of AESAMC to the choices of ℵ and T0, the algorithm was also run 20 times with 
ℵ = 15000 and T0 = 50000 (keeping the values of other parameters unchanged). As discussed 
earlier, a large value of ℵ should associate with a large value of T0. The results suggest that 
the performance of AESAMC is quite robust to the choice of ℵ and T0. 
For comparison, ASAMC, SA and the genetic algorithm were also applied to this example. 
ASAMC and SA employed the mutation operators used by AESAMC as their local 
samplers. For ASAMC, we tried two different settings of (ℵ, T0): (10000, 20000) and (20000, 
50000). Under each setting, ASAMC was run 20 times, and each run consists of 1.85 × 107 

iterations. For SA, we tried three different choices of the highest temperature: 500, 1000, and 
2000. For each choice, SA was also run 20 times. Each run consists of 100 stages, each stage 
consists of 1.85 × 105 iterations, and the temperature ladder decreases at a rate of 0.95. 
The genetic algorithm has many variants, each covering different applications and aspects. 
The variant we adopted here is the so-called real-coded genetic algorithm (RGA), which is 
described in Ali et al. (2005). RGA includes three free parameters, namely, the population 
size, the number of individuals to be updated at each generation, and the number of 
generations. RGA has been tested by Ali et al. (2005) on a variety of continuous global 
optimization problems. The results indicate that it is effective and comparable or favorable 
to other stochastic optimization algorithms, such as controlled random search (Price, 1983; 
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Ali and Storey, 1994) and differential evolution (Storn & Price, 1997). For this example, we 
tried three different settings of population size: 50, 100 and 200. The number of individuals 
to be updated at each generation was set to one-fifth of the population size, and the number 
of generations was chosen such that the total number of function evaluations in each run is 
about 1.85 × 107. Under each setting, RGA was also run 20 times. The results are 
summarized in Table 2 and Figure 3. 
Table 2 shows that the averages of the best function values produced by AESAMC are lower 
than those produced by other algorithms, although the runs are so long. Figure 3 plots the 
average progression curves of the best function values produced by these algorithms. RGA 
performs less well than SA and ASAMC for this example. This implies that this example 
does not favor to the crossover operations. Even so, AESAMC still significantly outperforms 
other algorithms. The average of the best function values produced by ASAMC with 1.85 × 
107 function evaluations is about the same as that produced by AESAMC with about 6 × 106 

function evaluations. This translates to a 3- fold improvement. The results produced by SA 
and RGA are not comparable to that produced by AESAMC at all. In our experience, high 
dimensional optimizations usually favor to the crossover operations. 
 

 
 

Table 2. Comparison of AESAMC, ASAMC, SA and RGA for minimization of the function 
(17). Let ui denote the best function value produced in the i-th run. The numbers in the 
columns of Minimum, Maximum, Average, and SD are calculated, respectively, as follows: 
min1 ≤ i ≤ 30ui, max1 ≤ I ≤ 30ui, 30

1i=∑ ui / 30, and the standard deviation of the average. Cost: the 
number of function evaluations in each run. 

4. Discussion 
In this article, we have described the ASAMC and AESAMC algorithms. A remarkable 
feature of the two algorithms is that they are not trapped by local energy minima. Under 
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mild conditions they can converge weakly toward a neighboring set of the global minima in 
the space of energy. The algorithms were tested on two examples. The numerical results 
indicate that ASAMC and AESAMC can significantly outperform their competitors, 
including SAMC, simulating annealing and genetic algorithms, in terms of quality of the 
solutions obtained with the same CPU time. 
 

 
 

Figure 3: Average progression curves of the best function values (over 20 runs) and their 
95% confidence regions (shaded area) produced by AESAMC (ℵ= 5000, T0 = 20000), ASAMC 
(ℵ = 10000, T0 = 20000), SA (τhigh = 10) and RGA (n = 100) for minimizing the function (17). 

In this paper, both ASAMC and AESAMC are described for continuous optimization 
problems only. Extension to discrete optimization problems is straightforward. For discrete 
optimization problems, the mutation and crossover operators required by AESAMC can be 
designed as in Liang & Wong (2000) and Goswami & Liu (2006). The K-point crossover 
operator described in this paper can also be used for discrete problems. 
Although ASAMC and AESAMC are proposed as optimization techniques, they can also be 
used as importance sampling techniques by keeping the sample space unshrinked through 
iterations. AESAMC has provided a general framework on how to incorporate crossover 
operations into dynamically weighted MCMC simulations, e.g., dynamic weighting (Wong 
& Liang, 1997; Liang, 2002) and population Monte Carlo (Cappé et al., 2004). This framework 
is potentially more useful than the conventional MCMC framework provided by 
evolutionary Monte Carlo (Liang & Wong, 2000, 2001). Under the conventional MCMC 
framework, the crossover operation has often a low acceptance rate. The MH rule will 
typically reject an unbalanced pair of offspring samples for which one has a high density 
value and other low. In AESAMC, this difficulty has been much alleviated due to the self-
adjusting ability of the algorithm. 
In this article, the parameter ℵ is set to a constant. If we associate it with iterations by letting 
ℵ(t) be a monotonically decreasing function of t with the limit 0, then ASAMC and 
AESAMC will converge in distribution toward the set of global energy minima. An 
interesting problem is to find the decreasing rate of ℵ(t) under which ASAMC and 
AESAMC can converge faster to the global energy minima. 
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1. Introduction 
“πάντα δὲ δοκιμάζετε, τὸ καλὸν κατέχετε, ἀπὸ παντὸς εἴδους πονηροῦ ἀπέχεσθε.” 
“Try everything, keep the good, stay away from all form of evil.” 
(St. Paul, 1 Thessalonians 5:21-22) 
The study of multiphase systems is of great importance in various fields of technological 
and environmental interest such as oil recovery, gas separations by adsorption, study of 
hazardous waste repositories and catalysis (Mohanty, 2003). In the past decade there has 
been considerable interest in numerical simulation studies (Baldwin et al., 1996; Torquato, 
2005; Kumar et al. 2008) where an accurate representation of the complex multiphase matrix 
at the pore scale enables detailed studies of equilibrium and dynamic processes in these 
structures.  Understanding the relationship between multiphase distribution at the 
microscale and transport properties is a general problem in applications involving 
multiphase systems (Kosek et al., 2005; Bruck et al., 2007). However, the direct correlation of 
experimental transport data to the underlying microscopic multiphase distribution is often 
found to be a very complicated procedure mainly because the multiphase configuration 
structure itself is highly complex and inadequately known. Hence, there is a strong need for 
a direct quantitative description of the pore-solid structure and the single or multi phase 
fluid distribution within this structure that should provide the basis for a reliable 
determination of the respective macroscopic transport properties. Such a methodology 
could contribute significantly to the efficient design of improved porous materials and 
multiphase flow processes. 
Simulated Annealing has become a paradigm methodology in many areas of non-linear 
multiparameter global optimization. It represents a powerful and algorithmically simple 
solution to some of the most demanding computational task. One could summarize the 
method in one sentence: try all that matter, keep the best and stay away from local traps. 
The scope of this chapter is to demonstrate the effectiveness of SA for the realistic three-
dimensional (3D) representation of the complex landscapes of multiphase systems thus 
enabling the simulation of disordered microstructures as they are experimentally observed 
in real materials.   
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Disordered materials, such as glasses, liquids and random heterogeneous materials, 
(Torquato, 2002) have a structure that is stochastic in nature. Their microstructure defines a 
random field, fully characterized by n-moments of the phase-function or simplified 
phenomenological expressions that contain semi-empirical parameters that implicitly 
depend on these moments.  In this context are defined the effective properties of the system 
that can be expressed as ensemble averages (expectations) of the moment generating 
probability functions. It is then natural to approximate such properties by ergodic averages 
through Monte Carlo simulation.  The derivation of the mathematical expressions for the 
ensemble averages is the subject of homogenisation theory and gives the necessary formal 
justification for the definition of effective properties such as conductivity, permeability, 
elastic moduli and wetting factors. 
The SA methodology will be illustrated in two applications: 
1. To solve an inverse problem for a two-phase, solid-void medium, namely the 3D 

microstructure reconstruction from statistical descriptors based on two-dimensional 
(2D) cross-sections of real-world materials. 

2. To determine the fluid spatial distribution in a multiphase system (pore-solid-fluid).  
An inverse, ill-posed problem implies that there are many realizations of a porous medium 
that share the same objective function and there is no unique solution.  When solving the 
reconstruction problem, the minimization of the objective function (system ‘energy’) has no 
physical significance and only serves as an ad hoc optimization variable. Thus, even 
intermediate, far from optimal, solutions represent a physically valid microstructure. This 
should be distinguished conceptually from finding the global minimum for the fluid 
distribution case that entails only the optimal solution as the one corresponding to a 
situation matching reality. Examples of the latter are common in many areas of Physical 
Chemistry where Statistical Thermodynamics formulations provide the theoretical basis for 
Monte Carlo simulations. 
To determine the fluid spatial distribution in the three-phase system it is also necessary to 
decouple the effect of the solid-void interface, which is structure depended and thus 
requires geometrical analysis, from the effect fluid-solid and fluid-fluid interface which 
depend on thermodynamic and physicochemical concepts and require the application of 
microscopic analysis in the form of simple or complex thermodynamic rules (Kainourgiakis 
et al., 2002). 

2. Optimization problem 
The multiphase distribution problem can be formulated as an optimization problem, 
seeking to minimize the difference between the statistical properties of the generated 
structure and the imposed ones. Simulated annealing (SA) was originally formulated as an 
optimization algorithm by Kirkpatrick and coworkers (Kirkpatrick et al., 1983).  They used 
the Metropolis algorithm to solve combinatorial problems establishing an analogy between 
the annealing process in solids, the behavior of systems with many degrees of freedom in 
thermal equilibrium at a finite temperature and the optimization problem of finding the 
global minimum of a multi-parameter objective function.  
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A randomly generated perturbation of the current system configuration is applied so that a 
trial configuration is obtained. Let cE and t  E denote the energy level of the current and 

trial configurations, respectively. If c t E E≥ , then a lower energy level has been reached, the 
trial configuration is unconditionally accepted and becomes the current configuration. On 
the other hand, if c tE E< then the trial configuration is accepted with a probability given by 

( )( ) BE k TP E e −ΔΔ = where t cE E EΔ = − , Bk is the Boltzmann constant and T is the 
temperature (or an arbitrary analog of it, used only to symbolically represent the degree of 
randomness in the spatial distribution of the system phases). This step prevents the system 
from being trapped in a local lowest-energy state. After a sufficient number of iterations, the 
system approaches equilibrium, where the free energy reaches its minimum value. By 
gradually decreasing T and repeating the simulation process (using every time as initial 
configuration the one found as equilibrium state for the previous T value), new lower 
energy levels become achievable. The process is considered complete when despite the 
change in T the number of accepted changes in different configurations becomes lower than 
a pre-specified value.  
The two applications that will be presented can be seen in from a very different perspective.  
The reconstruction of random media is an intriguing inverse problem that must be 
interpreted in the appropriate physical context whereas the fluid-phase distribution is a 
purely numerical exercise in finding the global minimum. 
In trying to address the non-uniqueness problem we have proposed (Politis et al., 2008) a 
novel methodology that uses a simple process-based structure, matching only limited 
structural information with the target material, to initialize the simulated annealing and 
thus reduce the search-space, constraining the solution path.  The stochastic / process-based 
hybrid method starts with a random sphere pack obtained using the ballistic deposition 
algorithm as the process-based step and then uses SA to minimize the least-squares error 
functional of the correlation functions (Kainourgiakis et al., 1999; Kainourgiakis et al., 2005).  

3. Reconstruction of random media 
The reconstruction of realizations of random media is of interest although it is possible to 
directly obtain, at least for some materials, high resolution (~200nm/pixel) 3D 
microtomography images (Spanne et al 2001; Tomutsa & Radmilovic 2003).  The use of 
limited information from low-order correlations can offer a valuable theoretical probe to the 
very nature of the complex structure (Sheehan & Torquato, 2001; Torquato, 2005). Exploring 
all physically realizable correlation functions enables the investigation of effective properties 
in ad hoc reconstructed materials that suit the experimenter.  
There are several techniques to statistically generate the 3D structures but broadly fall in 
three categories:  
1. Gaussian Random Fields: Based on thresholding a Gaussian random field, was the first to 

be introduced by P. M. Adler and co-workers (Adler et al., 1990; Adler, 1992; Thovert et 
al., 2001).  The reconstruction is based on and limited to the porosity and 2-point 
correlation function of the sample, measured by image analysis.  The method is 
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computationally very efficient but can not use additional spatial correlation functions or 
extended to non-Gaussian statistics. 

2. Simulated Annealing optimization: These methods attempt to reconstruct the phase 
function from theoretically any number of stochastic functions that describe the sample 
geometry (Rintoul & Torquato, 1997; Yeong & Torquato 1998a; Yeong & Torquato 
1998b; Torquato, 2002).  Computationally they can be demanding if higher order 
statistical moments are used (e.g. chord length, lineal path or 3-point correlation). 

3. Maximum entropy methods: They are derived from Bayesian statistics methods first 
applied for inverse problems is signal processing. Microstructures are assumed to be 
samples from a governing probability distribution function (PDF) which is computed 
from the limited available statistical descriptors (correlation functions) using maximum 
entropy theory (Sankaran & Zabaras, 2006). 

An alternative method to obtain the microstructure is to simulate the physical (thermo-
mechanical) process that they result from, in effect recreating the material synthesis history. 
This is an extremely complex and computationally very expensive process but still viable in 
small domains (Bakke & Oren, 1997; Bryant & Blunt, 2004).  
Effective reconstruction of random two-phase heterogeneous media can be realized from 
statistical descriptors, namely n-point correlation functions, obtained from digitized images 
of a material.  The n-point correlation function is a measure of the probability of finding n-
points (in a specified geometrical arrangement) all lying in the region of space occupied by 
one constituent of a two-phase material. For example the one-point correlation function is 
the probability that any point lies in a specific phase (either pore or solid phase). Thus if we 
define the phase function of a porous material as follows (Berryman, 1985; Torquato, 2002):  

 ( ) 1, if  is in phase 1 (pore)
0, if  is in phase 2 (solid)

Z
⎧

= ⎨
⎩

x
x

x
 (1) 

 

If the medium is statistically homogeneous, then the probability functions are translationally 
invariant in space and depend only on the spatial separation between the points. Then it 
follows that the 1-point correlation function is by definition equal to the porosity: 

 ( ) ( )1S Zε = =u x  (2) 

 

The angular brackets denote an ensemble average. Accordingly, the 2-point correlation 
function is the probability that two points at a specified distance can be found both in the 
same phase of the material: 

 ( )2 ( ) ( )S Z Z= +u x x u  (3) 

In general,  

 ( ) ( )1
1

,...,
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S Z
=

= ∏x x x  (4) 
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An additional simplification can be made if the medium is statistically isotropic. For an 
isotropic medium, ( )2S u becomes one-dimensional as it is only a function of u = u . It is 

often preferable to work with the 2-point auto-correlation function ( )zR u  which is a 

normalized version of ( )2S u : 

 ( )
( ) ( )

2

( ) ( )
Z

Z Z
R

ε ε

ε ε

− ⋅ + −
=

−

x x u
u  (5) 

Note that if we reverse the phase function in order to calculate the n-point correlation 
functions for the solid phase we observe that ( )zR u  remains exactly the same; simply 

change Z to 1-Z, and ε to 1-ε everywhere in eq. (5). For a statistically homogenous and 
spatially ergodic medium, the spatial average is equivalent to the ensemble average and 
thus we can define and compute the average quantities of the medium. 
Based on the work of Debye (Debye et al., 1957), the 2-point correlation function can be 
related to the interface area per unit volume of the material.  The specific internal surface 
area per unit volume ( vS ) can be determined from the slope of ( )zR u  at u=0 using eq. (6), 

adjusted for a digitized 3D medium (Jiao et al., 2007): 

 06 (1 )v u
dRS
du

ε ε == − −  (6) 

vS  can also be directly calculated from the reconstructed binary realization by counting the 
pixels at the void-solid interface. 
A reconstruction of a porous medium in three dimensions should reproduce the same 
statistical correlation properties as those obtained from the two-dimensional image and 
defined by the n-moments of the phase function.  In this work we only match the trivial one-
point correlation function, the porosity ε, and the two-point auto-correlation function which 
contain information about the phase size, orientation and surface area.  Other important 
descriptors that can be used are the lineal path function, the chord length function and the 
three-point correlation function (Torquato & Lee, 1990; Torquato, 2002).  Reconstructing a 
material using limited microstructural information is an inverse, ill-posed problem, i.e. there 
are many realizations of a porous medium that share same the porosity and two-point 
correlation function.  The choice to use only two functions can thus sometimes be 
inadequate to reproduce the material microstructure.  Matching higher order correlation 
functions should also be considered (Kainourgiakis et al., 2000) but it is computationally 
much more expensive for the realization of sufficiently large 3D domains.   

3.1 SA and process-based hybrid reconstruction of porous media 
In the typical SA method we start from a completely random initial distribution of the phase 
function in space.  In the proposed hybrid method we start with an initial configuration 
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provided by the output of a process-based method such as the described ballistic deposition 
of equal spheres.  The porosity of the initial structure must be equal with that of the original 
structure (usually the source image). 
The next step is to define the Energy, E, of our system. In this case E is the sum of squared 
differences between experimental correlation functions obtained from the SEM 
micrographs, and those calculated from the 3D generated structure.  

 
2exp( ) ( )i j i j

i j
E S u S u⎡ ⎤= −⎣ ⎦∑∑  (7) 

index i  corresponds to the degree of the correlation function, and index j , corresponds to 
the digitized distance u. If only the two-point correlation function interests us, then 2i = and 
the first summation is dropped out from eq. (7). Note that in the above algorithm, the one-
point correlation function (porosity) is always identical to the experimental by construction. 
The SA algorithm for the reconstruction problem has as follows: 
 

1. Create a candidate 3D image using random packing of spheres with a volume 
fraction equal to the target microstructure.  Adjust the porosity, if necessary, using 
Grain Consolidation to match that of the target medium.  Calculate the initial 
energy cE . 

2. A new trial state is obtained by interchanging (swapping) two arbitrarily selected 
pixels of different phases. This way the initial porosity of the structure is always 
preserved. Accordingly the energy of the trial state tE is determined through eq. 
(7).  

3. If   c tE E≥ , the trial configuration is unconditionally accepted, and becomes the 
current configuration. On the other hand, if  c tE E< then the trial configuration is 

accepted with a probability ( ) BE k TP E e−ΔΔ = . 
4. Steps 2, 3 are repeated at the same temperature T. 
5. Decrease temperature by a very slow rate and repeat steps 2-4. 
6. The process terminates when the successful exchanges become less than a specified 

number per iteration. 
 

The process is terminated when the number of accepted changes in different configurations 
becomes lower than a pre-specified value. The most time-consuming step in the SA method 
is the determination of E through the repeated calculation of the correlation function(s) at 
each pixel interchange.  Nevertheless, this calculation can be improved considerably be 
observing that once ( )2S u of the initial structure is calculated there is no need to fully 

sample all intermediate (trial) structures since any change in the correlation function(s) will 
be only due to the change along the x-, y- and z- direction that cross each altered pixel (two 
pixels at each swapping). This change in S2 can be simply evaluated by invoking the 
sampling procedure only along those rows, columns and heights crossing the altered pixels, 
adjusting appropriately the initially stored ( )2S u . 



Application of Simulated Annealing on the Study of Multiphase Systems 

 

213 

  
  (a) Starting from a random sphere pack (ε=0.4) (e) Starting from a random material (ε=0.4) 

  
                     (b) Structure at step 25                   (f) Structure at step 83 

  
                        (c) Structure at step 70                   (g) Structure at step 110 

  
                   (d) Final structure (step 112)                (h) Final structure (step 245) 

Figure 1.  Progress of the evolving microstructure at specific SA instances.  The material 
shown is the sintered SiC case (ε = 0.4).  Image size is 140 × 140 pixels. (solid is shown white) 
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T0=10-6 T0=10-9

An important parameter in the SA algorithm is the initial temperature T0, particularly if the 
original structure is not truly random but has some noticeable degree of correlation as it is 
the case of starting with a random sphere pack as input.  If T0 is too low then the algorithm 
is quite immobile, not many swaps are accepted and the initial structure is quite close to the 
final structure. On the other hand, if T0 is not too low, the algorithm becomes quite mobile, 
swaps are accepted more easily and the initial structure is not close to the final structure. 
 

 

T0=10-7 

 

  

 

 

 

 T0=10-12  

Figure 2. The effect of initial SA temperature, the target structure is in the middle, porosity is 
~42% and solid-space is shown black. 

4. Determination of the spatial fluid distribution 
To determine the multi-phase fluid distribution in porous material, the porous structure is 
represented by a set of cubic voxels of length . Each voxel is labeled by an integer that 
corresponds to its phase. The solid phase is labeled as 0 while the fluid phases as1 2 3 n, , , , . 
The saturation of the phase i, denoted as iS , is the volume fraction of the pore space 
occupied by the phase i. The distribution of the n fluid phases in the pore space is 
determined assuming that the total interfacial free energy, sG , is minimal. The function sG  
can be evaluated by:  

 
1

0

n n

s ij ij
i j i

G A σ
−

= >

= ∑∑  (8) 
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where ijA  is the elementary ij interfacial area and ijσ  the interfacial free energy per unit 
area of ij interface. The interfacial free energies obey Young’s equation and consequently the 

following set of ( 1)
2

n n −  equations is satisfied (van Kats & Egberts, 1998):  

 0 0 cosi j ij ijσ σ σ θ= +  (9) 

where ijθ  is the contact angle that the ij interface forms with the solid surface, 0i ≠ , 0j ≠  
and i j< . The determination of the spatial distribution of fluid phases that corresponds to 
the minimum sG  is achieved by exploring all possible configurations. In practice this is 
impossible since the number of configurations is extremely high and consequently, the 
optimal one must be determined by importance-sampling procedures. When only two fluid 
phases are present, the simplest and rather inefficient heuristic technique that can be used is 
the following: A specified number of voxels, in random positions of the pore space, are 
marked as sites occupied by phase 1 while the rest are marked as belonging to phase 2. The 
number of sites occupied by each fluid phase corresponds to a desired fraction of pore space 
occupied by that phase (saturation). Then two randomly selected sites occupied by different 
fluid phases exchange their positions. This change results in a variation of sG  by an 
amount sGΔ . To minimize sG , one can accept every phase exchange trial with 0sGΔ ≤  and 
reject those where 0sGΔ > . However, due to the complicated sG  landscape with respect to 
the spatial distribution of the fluid phases, local minima are present and when the system 
reaches one of them no escape is possible (Knight et al., 1990).  
The SA algorithm is used for the minimization of the multidimensional functions as 
originally adapted for a similar problem by Knight et al. (1990). Now, the new configuration 
that is generated by the phase exchange of random voxels is accepted with a probability 
given by:  

 min 1 s refG Gp e−Δ /⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= ,  (10) 

where refG  is an analog of the  Bk T parameter in the Metropolis algorithm and Bk , T  are 
the Boltzmann constant and the ambient temperature respectively. After a sufficient number 
of iterations (usually ten-times the number of the pixels occupied by the fluid phases) and 
for a specific refG  value, the system approaches the equilibrium state. By gradually 

decreasing refG , according to a specified “cooling schedule” and repeating the simulation 
process, using every time as initial configuration the one found as equilibrium state for the 
previous refG  value, new lower energy levels of sG  become achievable. The process is 

considered complete when despite the change in refG , the number of accepted changes in 
different configurations becomes lower than a pre-specified value (typically when the ratio 
of the number of acceptable moves to the total number of trials becomes lower than 10-5).  
The above technique can be generalized for n fluid phases distributed in the pore space. 
Each voxel of the pore space is randomly characterized by an integer, 1,2, ,n… , that 
corresponds to one of the existing fluid phases. The number of voxels that are occupied by 
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each phase satisfies a predefined saturation of the specific phase, iS . Then, two voxels 
belonging to fluid phases are randomly selected, their phases are exchanged and the swap is 
accepted with probability according to eq. (10). This procedure is termed procedure (A).  
To employ a more efficient minimization strategy, termed procedure B, n voxels occupied 
by different fluid phases are randomly selected at each minimization step. Then, ( 1) 2n n − /  
voxel-phase interchanges are performed. For the case of three fluid phases, the trial swaps 
are 1-2, 1-3 and 2-3. Each trial swap is accompanied by a variation of sG  by s ijG ,Δ , where 

i j< . If at least one 0s ijG ,Δ < , the trial swap with the minimum s ijG ,Δ  is accepted. In the 

opposite case, where every 0s ijG ,Δ > , the swap ij  is accepted with probability ijp  defined 
as:  

 
( 1) 2

s ij refG G

ij
ep
n n

,−Δ /

=
− /

 (11) 

Note that since s ij refG Ge ,−Δ /  then 
1

1
1

n n

ij
i j i

p
−

= >

≤∑∑ and therefore the system remains unchanged 

with probability
1

1
1

n n

ij
i j i

q p
−

= >

= −∑∑ . After a sufficient number of iterations, refG  is gradually 

decreased and the system approaches the lowest energy configuration. It must be noticed 
that for 2n = the acceptance rule described by eq. (10) is recovered.  
The simple case of a single pore with square cross section containing three fluid phases is 
selected to start with. The size of the pore is 50 50 100× ×  and the saturation of each phase is 
equal to 1 3/ . The corresponding interfacial free energies in arbitrary energy units per unit 
area (square voxel length) are 01 3000σ = , 02 2500σ = , 03 1200σ = , 12 500σ = , 13 1800σ = , 

23 1200σ =  and consequently 12 13 23 0θ θ θ= = = . Thus, the labels 1,2,3 correspond to the non-
wetting, intermediate wetting and wetting phases respectively. The “cooling schedule”, the 
initial choice of refG  and the minimization strategy are determined with the help of this 
simple pore geometry. The results obtained are used for the determination of the phase 
distribution in more complicated porous domains. The “cooling schedule” applied is:  

 0
N

ref refG f G ,=  (12) 

where f  is a tunable parameter obeying 0 1f< < , N is the number of iterations for a given 

refG  and 0refG ,  is the initial choice of refG . A “cooling schedule” of this form is used by 
Knight et al. (1990) and has the advantage that during the annealing process the variation of 

refG  decreases, allowing for better resolution as the system approaches the optimal 
configuration. The value of the parameter f  plays a dominant role in the simulation. Small 
f  values decrease refG  quickly resulting in fast simulations, however the risk of local 

minima trapping is high in that case. Contrarily, when f  approaches unity the simulation 
becomes lengthy in time but the system escapes more efficiently from metastable 
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configurations. Figure 3 illustrates the distribution of the fluid phases obtained for different 
f  values. It is observed that for 0 999f < .  the simulation produces final configurations 

where, although some clusters are present, the phases are rather randomly mixed. As f  
increases, physically sound configurations appear. The wetting phase (blue) is located in 
contact with the solid walls, the non wetting phase (red) forms a cylinder-like cluster at the 
center of the pore while the intermediate wetting phase (green) fills the space between the 
wetting and the non-wetting ones. In Fig. 4 the minimum total interfacial energy, s minG , , is 
plotted against f . It is noteworthy that the total interfacial energy values are considerably 
close to each other, compared with their absolute values, although the distribution of the 
fluid phases in Fig. 3 is undoubtedly different. This indicates that the minimization 
procedure must be handled with care. In the present work, in order to achieve as accurately 
as possible the configuration with minimum interfacial energy, 0 999f = .  is used.  
At the beginning of the simulation, another important issue that must be considered is the 
initial choice of refG . The value of 0refG ,  must be large enough, approximately 30-times the 

highest ijσ  value, in order to ensure that the system is initially in a “molten” state and not 

trapped in a local minimum. When 0refG , is not large enough the system cannot approach 
the optimal distribution.   
 

Figure 3. Phase distribution in a rectangular pore for different f  values when three fluid 
phases are present. Blue color: wetting phase, green color: intermediate wetting phase, red 
color: non wetting phase. The saturation of each phase is 1 3 . 
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Figure 4. Minimum interfacial energy vsf for rectangular pore containing three fluid phases. 
The saturation of each phase is 1 3 and the initial choice of refG is 510 . 

Figure 5. Phase distribution in a random sphere packing when three fluid phases are 
present. Blue color: wetting phase, green color: intermediate wetting phase, red color: non 
wetting phase. The saturation of each phase is 1 3 . 

5. Evaluation of the SA method for the reconstruction problem 
To demonstrate the proposed method (Politis et al., 2008) we have chosen to calculate the air 
permeability of a sintered silicon carbide (SiC) ceramic characterized in-house and the Ni-
YSZ anode cermet of a solid oxide fuel cell (SOFC) found in the literature (Lee et al, 2004).  
The backscatter electron SEM micrographs of both materials were digitized using standard 
image processing techniques (Ioannidis et al., 1996). Both materials are consolidated, 
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produced using a fine powder substrate that is sintered at an elevated temperature.  In total 
we have generated two realizations for each material: one using the hybrid method and 
starting from the porosity-matching random sphere pack and one by using the SA algorithm 
with a random initial structure. 

5.1 Constructing the microstructure 
The reconstructed material domains are three-dimensionally periodic with a simulation 
volume of 1403 pixels and a porosity of ~40%.  The mean pore size though differs by almost 
an order of magnitude: 10.2 μm for SiC and 0.9 μm for Ni-YSZ.  In Fig. 6, we plot the two-
point auto-correlation function for the test-target materials, as obtained from the digitized 
SEM images.  The corresponding two-point correlation function of the reconstructed 
structure it is not shown as it is an exact match.  This is expected because it is the only 
optimization target for the SA algorithm.  If more additional correlation functions are added 
then the match becomes non-trivial.  We can noticed that for SiC the Rz(u) drops practically 
to zero after ~16 μm, meaning that there is no correlation after this length.  Similarly, for Ni-
YSZ, there is no correlation after ~4 μm.  The domains used in the computations are equal to 
1403 pixels for both structures, resulting in spatial dimensions of 200 μm3 for SiC and 
21.5 μm3 for Ni-YSZ. 
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(a) SiC (100μm scale-bar) (b) Ni-YSZ cermet (10μm scale-bar) 

Figure 6. Binarized SEM image, 2-point autocorrelation function and 3D hybrid 
reconstruction realization with a volume of 1003 pixels that represent 142.8 μm3 for the SiC 
and 15.4 μm3 for the Ni-YSZ (pore space is transparent for clarity). The Ni-YSZ porosity is 
0.40 with an image size of 154 154× pixels (pixel length ~0.154 μm).  The SiC porosity is 0.40 
with an image size of 235 235×  (pixel length ~1.428 μm).  

5.2 Absolute permeability calculations 
The absolute permeability of the porous material gives a measure of the resistance of the 
porous medium in the viscous incompressible fluid flow through its pore space. In a 
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representative macroscopic element of homogeneous and isotropic porous material the 
superficial velocity, sv , of a viscous fluid is described by Darcy’s law  

 s
kv p
η

= − ⋅∇  (13) 

where p∇ is a prescribed pressure gradient, k is the permeability coefficient, which depends 
on the spatial distribution of solid and void phase and η is the fluid viscosity.  
The calculation of the permeability coefficient k , requires the determination of the flow 
field at the microscale at creeping flow conditions, described by the Stokes equation coupled 
with the continuity equation: 

 2 pη∇ = ∇v  (14a) 

 0∇⋅ =v  (14b) 

where v and p  are the local fluid velocity vector and the pressure, respectively. The 
boundary conditions are no-slip of the fluid at the solid-void interface and periodicity. 
The numerical method employed in this work is a finite difference scheme, used previously 
in similar studies (Quiblier, 1984; Adler et al., 1990; Coelho, 1997; Liang et al., 2000). A 
staggered marker-and-cell mesh is used, with the pressure defined at the centre of the cell, 
and the velocity components defined along the corresponding surface boundaries of the 
rectangular cell. A successive overrelaxation method is used to solve for the microscopic 
velocity field.  To cope with the numerical instabilities caused by the continuity equation, an 
artificial compressibility technique has been employed (Roache, 1982).  In this fashion, the 
steady state problem is replaced by an unsteady one, which converges to the incompressible 
steady state solution at sufficiently long time.  Convergence was achieved when the 
calculated flow rate values fluctuated less than 1% across the various cross-sections of the 
medium (Kikkinides & Burganos, 1999). 
The results for the permeability of two different porous materials, using air as the flowing 
fluid, are summarized in Table 1. 
 

 Air Permeability (m2) 
 Experiment Simulation 
  Hybrid method SA only 
Ni-YSZ cermet 6.0×10-15 5.67×10-15 4.00×10-15

Sintered SiC 9.4×10-13 1.07×10-12 8.12×10-13

Table 1: Numerically calculated and experimentally measured permeability values for the 
Ni-YSZ cermet and sintered SiC.   
It is evident that the permeability results obtained from the hybrid reconstruction method in 
excellent agreement for Ni-YSZ (within 5%) and very close for SiC (within 13%).  The 
permeability of the SiC that resulted using the SA alone, overestimates the experimental 
value as much as the hybrid method underestimates it. For Ni-YSZ the error is much more 
pronounced (~33%) when using SA alone.  The hybrid algorithm requires less than half the 
processing steps of the purely SA approach (see Fig. 1) resulting in a significant speed-up of 
the computations.   
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6. Evaluation of the SA method for the multiphase distribution problem 
The assessment of the validity of the generated multiphase distributions in a pore structure 
is achieved by the measurement of the relative permeability of the porous material when 
two or more fluids are present. A significant simplification in the calculation of this property 
is to consider that only one fluid is flowing each time, the rest of the fluid(s) being immobile 
and simply treated as additional “solid” phase in the pore structure. In such a case one can 
still use the methodology outlined above for the determination of the absolute permeability 
treating the immobile fluid(s) as an expansion of the solid phase. This procedure can be 
performed sequentially for each fluid in order to get the relative permeability for each fluid 
in the multiphase configuration (Kainourgiakis et al. 2003; Galani et al, 2007). 

6.1 Relative permeability calculations 
The effective permeability for fluid i, ke,i, which depends on the spatial distribution of solid 
and fluid phases, is calculated again through Darcy's law: 

 ,
,

i

e i
s i

k
v p

η
= − ⋅∇  (15) 

Where ,s iv  is the superficial velocity of a viscous fluid in a sample of the homogeneous 

and isotropic porous medium and iη is the fluid viscosity. Then the relative permeability for 
fluid i, ,R ik , is defined by dividing the effective permeability, ,e ik , with the absolute 

permeability, k , measured in the absence of other fluids: 

 ,
,

e i
R i

k
k

k
=  (16) 

It is evident that ,R ik  is a non-dimensional parameter.  
Galani et al (2007) calculate the relative permeabilities of two and three phase fluid 
distributions for mono-dispersed random sphere packs when only one fluid phase is 
moving with low flow rate while the other fluid phase(s) are immobile and considered as an 
“expansion” of the solid phase. The results for the case of a two-phase fluid system of a 
wetting and non-wetting fluid are given in Fig. 7 and 8. 
Fig. 7 presents relative permeability as a function of the effective saturation of the wetting 
phase (phase 2), ( ) ( ),2 2 ,2 ,2  / 1e im imS S S S= − − ,where ,2imS  is the residual or immobile 

saturation of phase 2 when the non-wetting phase (phase 1) is stagnant while the wetting 
phase (phase 2) is flowing. Residual saturation is the amount of a fluid (e.g. oil) that remains 
in a porous material after the displacement of this fluid from another immiscible fluid (e.g. 
water) which penetrates the porous medium. The remaining fluid is stagnant and may form 
scattered clusters instead of a continuous phase. Fig. 7 also presents the corresponding 
experimental results that were obtained by Stubos (1990) for steel particle beads of porosity 
0.4, as well as semi-empirical correlations from Levec (1986). In the present work, the 
residual saturation value, ,2imS , is set equal to 0.25, just as it was measured by Stubos (1990). 
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In all cases the computed relative permeability curves in very good agreement with the 
experiments in the whole spectrum of the effective saturation of the wetting phase, ,2eS . 
 

Fig. 7. Relative permeability of the wetting phase vs. the effective saturation of that phase, 
,2eS , for the random packing of non-overlapping spheres of porosity 0.41.  

Fig. 8 presents relative permeability as a function of the effective saturation of the non-
wetting phase (phase 1), ( ) ( ),1 1 ,1 ,1 / 1e im imS S S S= − − , when the wetting phase (phase 2) is  
 

 
Fig. 8. Relative permeability of the non-wetting phase vs. the effective saturation of that 
phase, ,1eS , for the random packing of non-overlapping spheres of porosity 0.41. 

stagnant while the non-wetting phase is flowing. The corresponding relative permeability 
experimental data that are used for comparison purpose have been obtained for low flow 
rates of the non-wetting phase. Fig. 8 also presents the corresponding experimental results 
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that have been obtained by Stubos (1990) for steel particle beads of porosity 0.4, for two 
different values of equivalent diameters, dc and also those of the correlated function 

2
,1 ,1R ek S= . In the present work, the residual saturation value, Sim,1, was set equal to 0.12, as 

it was measured by Stubos (1990). The observed differences between the results of the 
present work and the corresponding experimental ones are again relatively small and can be 
explained by potential deviations between the calculated and the experimental fluid-phase 
distribution.  

7. Summary 
The SA method was applied to the study of multiphase, disordered systems.  Determining 
the phase distribution in the microstructure is of fundamental importance in making a 
connection with their effective properties that ultimately provides a tool to design optimized 
and tailor-made materials. SA was shown to provide a flexible and simple to implement 
methodology. Two conceptually distinct problem classes were used to illustrate the method: 
1) an inverse problem, the 3D microstructure reconstruction from statistical descriptors 
(correlation functions) extracted from standard microscopic imaging methods (e.g. 
SEM/TEM) and 2) finding the global optimum corresponding to the minimum energy 
configuration in a multiphase system (pore-solid-fluid).   
In solving the reconstruction problem there are many realizations of a porous medium that 
satisfy the minimization of the objective function that constitutes a functional of statistical 
descriptors with no physical significance per se.  We have proposed a novel, hybrid 
methodology using a defined initial structure that attempts to incorporate the natural 
synthesis history of the material and thus address the non-uniqueness of solution issues in 
the inverse problem.  The method was implemented with a random sphere pack obtained 
using ballistic deposition as the process-based step and then matched the porosity and pair 
correlation function of the material with SA. 
For the multiphase system, tracing the minimum of the total free interfacial energy with SA 
is directly equivalent with the thermodynamic distribution of the fluid phases in the pore 
space. The optimum configuration for a given degree of phase partitioning is derived 
assuming that in equilibrium the total interfacial free energy reaches a global minimum 
value. 
The procedure has been validated by the determination of the absolute and relative 
permeability in the multiphase system. The agreement of the results with pertinent 
literature data reinforces the validity of the proposed techniques. 
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1. Introduction 
1.1 Objective 
Reliability is a very important field of study in today’s era of technology. It is essential to 
quantitatively estimate the reliability of a product or device before it is mass produced and 
sold in the market through accelerated life tests. In reliability testing and data analysis, 
global optimization of the log-likelihood function plays a key role. An effective technique 
for this optimization is Simulated Annealing (SA). 
The objective of this chapter is to illustrate the applicability of SA to reliability data 
analysis. In particular, this optimization technique is very useful for mixture distribution 
analysis which will be described in detail later. The flow of the chapter goes as follows. A 
brief introduction to reliability statistics will be provided, intended to provide a basic 
outlook into this fascinating field to readers who are new to it. The role of SA in reliability 
statistics will be made clear through the developed log-likelihood function which needs to 
be optimized. This is followed by an insight into the need for mixture distribution 
analysis in reliability testing and assessment. The origin and methodology underlying the 
SA algorithm is then described in detail. The application of SA to mixture distribution 
analysis is presented and two practical examples of this application are provided from the 
microelectronics industry where electronic device reliability for gate oxide breakdown 
and electromigration phenomenon is assessed. Towards the end, techniques proposed in 
the literature to improve the efficiency of search for SA is presented and a concluding 
section directs the reader on the path to pursue further research investigations in 
simulated annealing. 

1.2 Scope 
The most fundamental form of the SA algorithm is employed in the reliability analysis 
presented in this chapter. Although more efficient designs of the SA algorithm have been 
made, they are not utilized in this work. The application case studies illustrate the 
application of SA for reliability analysis only in the field of microelectronics. The approach 
presented in this paper is nevertheless applicable to all practical reliability studies. 
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2. Introduction  to  reliability  testing 
2.1 Need for reliability 
In today’s competitive world and the age of globalization, it has become very essential for 
the manufacturing industry to keep up to the rapidly rising demands and expectations of 
the customers. To stay upbeat in the industry and capture large market shares, companies 
have been marketing aggressively through various strategies one of which is the value-add 
to their products. Cost competition will always be a lose-lose strategy. Reliability of a 
product is a good value-add to a product, and this is even more so for high-end electronic 
products that have revolutionized the world that we live in today. Good reliability brings 
good reputation and near zero field return during warranty period of the product. 
Prior to implementing techniques to improve reliability of a manufactured product, it is 
essential to characterize and quantify reliability in a statistically credible manner so that 
improvement efforts can be evaluated. Reliability in itself is a large and wide field of 
research that encompasses statistical distributions to model failure characteristics and 
physics of failure to understand the nature of a failure mechanism and its associated failure 
mode. 
The statistics of reliability modeling has been well investigated in the past few decades and 
therefore the statistical techniques for reliability quantification are established. However, the 
successful application of these models to practical usage has not been very fruitful. The 
problem lies in the inappropriate usage of these theories by practicing reliability engineers 
in the field as the assumptions behind some of the theories are not well understood by 
engineers in the industry and the lack of familiarity with the methodology to account for the 
presence of multiple failure mechanisms in a given reliability test data. 

2.2 Accelerated life testing 
As product reliability is being enhanced, the time taken to obtain the product failure time 
gets excessively longer, and a common practice therefore is to evaluate product reliability 
using accelerated life testing (ALT). It is a technique whereby a product is stressed to failure 
at a much higher stress condition than the normal field operating condition experienced by 
it. The high stress condition serves to accelerate the failure mechanism so that failures can be 
observed sooner and adequate time-to-failure (TTF) data for the product can be collected for 
reliability analysis. Reliability analysis is most useful when it is obtained at the earliest 
stages of product development so as to facilitate improvements targeted at prolonging the 
lifetime of a product before it is mass produced and marketed to the customers. ALT is 
therefore gaining more relevance today as time-to-market gets shorter and shorter. 
It is crucial that the high stress in ALT should only accelerate the failure mechanism 
observed in the field use condition and that it should not give rise to new unseen failure 
mechanisms which are not typically found at use stress levels. Otherwise, estimation and 
extrapolation of the product lifetime to the field conditions will not reflect field failures 
appropriately and this will defeat the very purpose of performing an ALT. On the other 
hand, there are many potential pitfalls to ALT as outlined by Meeker et al. (1998) and Suhir 
(2002), one of which is the occurrence of multiple failure mechanisms due to the high stress 
applied during the ALT. 
To uncover the different failure modes and mechanisms underlying a product failure, it is 
necessary to perform a failure analysis (FA) on the failed products. Such an analysis requires 
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precise sample preparation and accurate examination using various FA instrumentation 
tools and these observations do provide useful information on the physical nature of the 
localized failure site and the necessary corrective action to be taken to prolong or avoid 
these failures in the field. However, performing failure analysis for all the reliability test 
failures is practically impossible, and a way to classify and categorize failed products into 
different failure mechanisms based on statistical means is necessary so that only a few 
representative failed products in each category will need to be analyzed. In this chapter, we 
will present this method using the Simulated Annealing. 

2.3 Statistical analysis of failure data 
Having discussed the relevance of reliability and ALT in quality and reliability 
improvement strategies, we shall now get acquainted with the fundamental probabilistic 
and statistical definitions underlying reliability. We shall then show where Simulated 
Annealing (SA) comes into the picture of reliability data analysis. Please note that the terms 
“device”, “system” and “product” all refer to the same entity and they may be used 
interchangeably in this work. 

2.3.1 Reliability Fundamentals 
Reliability is defined as the probability that a product will perform its intended function 
over a time period t given that it is being used under stated operating conditions (Ebeling, 
2005). It is a continuous function of time t and is denoted by R(t). Mathematically, reliability 
can be expressed as in (1) where T is a continuous random variable representing the time to 
failure of the product with T ≥ 0. For a given value of t, R(t) is the probability that the time to 
failure is greater than or equal to t. Note that ∀t ≥ 0, 0 ≤ R(t) ≤ 1; R(0) = 1 and lim t→∞ R(t) = 0. 

 (1) 

The complementary function of R(t) is the failure probability or cumulative density function 
(CDF) which is denoted by F(t) and is written as: 

 (2) 

The time derivative of the CDF gives the probability density function (PDF) of the 
distribution, denoted by f(t). The failure rate, λ(t), represents the instantaneous rate of 
failures in a sample. It is an alternative way of describing a failure distribution. It is 
expressed as in (3). When λ(t) is an increasing, decreasing or constant function of time, they 
are characterized by increasing failure rate (IFR), decreasing failure rate (DFR) or constant 
failure rate (CFR) respectively (Ebeling, 2005). A typical characteristic of the failure rate of 
any product is represented by the bathtub curve in Fig 1 (US Army, 2005) which shows the 
life pattern of the failure rate of the product from the instant of manufacturing and initial 
field use up to the later stages of the aging (wear-out) phenomenon. DFR relates to the 
infant mortality initial period of a system’s operation; CFR is the period of useful system 
operation with the lowest failure rate and IFR accounts for the aging mechanism in the 
product due to gradual wear-out which is characteristic of its intrinsic failure. It is always 
desirable to ship out a product after its DFR regime so as to minimize field returns (this is 
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done using a screening mechanism known as burn-in) and prolong the CFR regime as long 
as possible such that the product’s useful desired lifetime does not include the wear-out IFR 
region where increasing number of failures are expected to be seen. 

 

(3) 

 
Fig. 1. Bathtub curve representing the failure rate regimes of a typical system (US Army, 
2005). 

The mean time to failure (MTTF) of a product is an important reliability metric and is given 
by (4). It represents the area under the reliability function spanning the whole range of the 
time continuum starting at t = 0. 

 
(4) 

There are various statistical distributions that are used to model the statistics of failure time 
of products. Examples are the exponential, weibull, normal, lognormal and gamma 
distributions, to name a few. The most widely applicable distribution amongst these for 
microelectronic devices are the Weibull and Lognormal distributions. The parameters of 
these distributions can be tuned so as to fit any set of failure data be it decreasing, increasing 
or a constant failure rate in the bathtub curve. 
These statistical distributions are associated with different degradation behaviors of a 
product. For example, Weibull distribution is typically used to characterize catastrophic 
failures while the Lognormal distribution is used to represent gradual rates of degradation 
(Tobias et al., 1995). We shall be considering the Weibull and Lognormal distributions in our 
case studies later on in this chapter and it is therefore useful to know the form that their 
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reliability functions take as shown below in (5) and (6). In (5), β is the shape parameter and η 
is the scale parameter which is also called the characteristic life of the product. The ranges β 
< 1, β = 1 and β > 1 represent the early failure, constant failure and wear-out failure regions 
of the bathtub curve respectively. The lognormal reliability function in (6) is also 
characterized by two parameters viz. the shape parameter (σ) and the median time to failure 
(t50). The function Φ(z) is the standardized normal CDF. 

 
(5) 

 
(6) 

2.3.2 Failure data analysis 
As mentioned earlier, to expedite the process of reliability testing and obtain useful 
information on the system (device) reliability prior to mass production, it is necessary to 
perform ALT. Having performed the ALT, there is a standardized set of rules to follow in 
collecting, transforming, fitting and analyzing the obtained failure data. 
Having collected the failure data (ti), the empirical CDF values, F(ti) are calculated as in (7) 
where n is the total number of product sample under test (i.e. sample size of ALT test) and i 
is the failure order number when the Time to Failure (TTF) values (ti) and their order 
numbers are listed in ascending order. This approach to compute the empirical F(ti) values is 
known as the median rank method (O’Connor, 2002). Note that the expression in (7) is valid 
only for the case where all the devices are tested until failure is observed. In some cases 
however, we might terminate an ALT prior to all the devices failing in which case the test is 
said to be censored. The test could be censored after a certain number of failures are 
observed (failure terminated test) or after a pre-determined fixed test time duration (time-
terminated test). In the case of censored data, the index i is slightly modified to account for 
the effect of censoring. The details of these changes due to censoring are not critical here and 
readers interested in gaining more in-depth knowledge on this subject could refer to 
(O’Connor, 2002) for the complete details. 

 
(7) 

The empirical CDF values obtained are plotted on a graph paper that is unique to different 
statistical distributions and it is necessary to find the best fitting distribution parameters to 
fit this set of data accurately. One of the approaches to fit the data is to maximize the so 
called Likelihood function (LKL) which is given by the expression in (8) where tf refers to the 
time-to-failure (TTF) data of the failed samples and tc represents the censored data 
corresponding to those devices whose failure was not observed (Jiang et al., 1992). Note that 
there could be various reasons for observing censor data such as unprecedented withdrawal 
of the test device during the test for other purposes, failure of the device due to some other 
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failure mechanism which is not of interest in the analysis etc… In (8), n is the total number 
of devices under test while r is the number of actual failures observed during the test (r ≤ n); 
the symbol ψ represents the set of distribution parameters which is {β, η} for a Weibull 
distribution and {t50, σ} for a Lognormal distribution and f(t) and R(t) are the PDF and 
reliability functions respectively. 

 
(8) 

Typically, instead of maximizing the likelihood (LKL) function, it is conventional to perform 
a monotonic transformation of LKL by taking its natural logarithm and maximizing ln(LKL), 
which is called the Log-Likelihood function, denoted here by LLKL. The expression for 
LLKL is given by (9) and the best fitting distribution parameter set, ψ, that fits the median 
rank CDF data in (7) is determined by optimizing the LLKL function. 

 
(9) 

This LLKL function is the focus of our attention from now on since it is this function we will 
be optimizing to obtain the best fit to the ALT test data. 
Fig 2 illustrates the median rank data plotted on a Lognormal distribution plot for a set of 
ALT data. The straight line fit shown is obtained by maximizing the LLKL function for the 
Lognormal distribution using the expression given in (9). 
 

 
Fig. 2. Illustrating the Median Rank CDF data plotted on a Lognormal probability plot. 
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2.3.3 Optimization techniques for likelihood function 
The LLKL function described in (9) is a multi-dimensional function of the statistical 
distribution parameters (ψ) that f(t) and R(t) are associated with depending on the 
distribution used. When the median rank CDF data needs to be fitted by suitable 
distribution parameters, various techniques could be used to do so. One of the approaches 
would be to plot the F(ti) points on the distribution probability plot graph paper and fit the 
points approximately by a straight line. The other approach would be to perform a least-
square line of best fit regression analysis to determine the correlation coefficient and the 
slope and intercept of the fitting line which would in turn provide the values for ψ. 
Other approaches include the Newton-Raphson method, Brent’s method, Downhill Simplex 
method, Conjugate Gradient methods, Quasi-Newton methods etc… that are described in 
sufficient detail in (Press et al., 2002). Some of these methods might only work under special 
cases where the gradients of the function to be maximized are defined at all points. In other 
words, they could be gradient sensitive. A few other methods above might work but might 
not be easy to code and implement. The most important fact regarding the above methods 
are that they are all local optimization algorithms and therefore, if we make use of these 
methods to find the global optimum, we would most likely end up getting a local optimum 
depending on the initial guess for the distribution parameters at the beginning of the 
algorithm execution. Since these methods are highly sensitive to the initial guess and are 
capable only of local optimization, it is necessary to look out for other techniques which are 
capable of finding the global optimum and are relatively insensitive to the user’s initial 
guess. 
One of the most useful, easy to implement and robust techniques for global optimization of 
the LLKL function is Simulated Annealing (SA) (Brooks et al., 1995). It is useful for LLKL 
functions here because SA is capable of efficiently finding the global optimum of any n-
dimensional function. As mentioned earlier, since LLKL functions are typically multi-
dimensional, SA would be an easy approach to use to optimize them. 
In optimization literatures, the function to be optimized is usually referred to as the 
objective function (Press et al., 2002). We will follow the same convention here and call our 
LLKL function as the objective function. The equation to be solved for obtaining the best fit 
distribution parameters to the ALT test data is now expressed as in (10) where φ1, φ2, φ3, …, 
φk etc… are the statistical distribution parameter elements belonging to the set ψ. In short,  
ψ = {φ1, φ2, φ3, …, φk}. The log-likelihood function is being maximized with respect to each 
of the distribution parameters to obtain the optimal solution. 

 
(10)

Remember we mentioned earlier that a simple straight line fit to the median rank data on 
the probability plot paper would be sufficient to approximately determine the value of the 
distribution parameters. This method would however work only in the case where the 
failure data collected consists of a single distribution. In many cases, if there are more than 
one failure mechanisms in a device, then each failure mechanism would have its own 
statistical distribution with a uniquely defined set of parameters and hence, the overall 
failure data plotted would contain more than one distribution which cannot be represented 
by a single straight line. Such distributions which comprise of a mixture of more than one 
distribution are called mixture distributions (Titterington et al., 1985). In the case of 
parameter estimation for a mixture distribution, simulated annealing is all the more useful 
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since it helps determine the optimal set of parameters for any mixture distribution given its 
ability to perform global optimization for any n-dimensional system. 
In summary, this section has provided a brief overview on the fundamentals of reliability 
statistics. The statistical theory on reliability data analysis was introduced and the relevance 
of simulated annealing in this context was highlighted. It should now be clear that our 
purpose is to make use of SA to globally maximize the n-dimensional log-likelihood 
function which will in turn help determine the optimal values of the distribution parameters 
that fit a given set of failure test data. In the next section, we shall treat mixture distribution 
in greater detail and show the stochastic process associated with it and the final form of the 
log-likelihood (LLKL) function for a mixture distribution that we will be maximizing. 

3. Mixture  distribution  analysis 
3.1 What are mixture distributions? 
Any product or device in the field could fail due to various reasons. It is rare to find a device 
which fails due to only a single cause. In some cases, the presence of a failure mechanism 
triggers other failure mechanisms to evolve and as a result, the final device failure could be 
caused by the interaction and combined effects of these multiple failure mechanisms. 
Every failure mechanism has its own statistical distribution that is dictated by the inherent 
physics of failure and the rate of degradation of the device is governed by the kinetic 
processes embedded in the failure physics. When there are more than one failure 
mechanisms, there are more than one statistical distributions present in the failure data. 
Therefore, the overall distribution describing the data is a mixture distribution. Fig 3 shows 
the mixture distribution PDF plot consisting of two component distributions corresponding 
to two different failure mechanisms. 
 

 
Fig. 3. PDF plot illustrating the effect of multiple failure mechanisms on the mixture 
distribution PDF. 
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Such mixture distributions are very commonly observed in ALT test data due to the high 
stress employed in the test. In the field of microelectronics, for example, package failures 
could occur due to solder electromigration at the bond pads or due to corrosion effects as a 
result of exposure to moisture. Similarly, the gate oxide layer in a MOS transistor could fail 
due to manufacturing induced voids and defects causing extrinsic failures, or percolation / 
leakage path evolution connecting the metal gate to the Si substrate due to intrinsic failures 
that evolve as a consequence of aging and wear-out phenomenon. Another popular 
observation includes the void nucleation and growth in the aluminium or copper 
interconnect metal lines that connect the transistor devices in an integrated circuit. While 
some voids evolve in the narrow high current density vertical vias connecting different 
levels of metallization, others evolve in the main interconnect line itself. One of the later 
sections clearly describes case studies that show the presence of mixture distributions in 
electronic device reliability. 

3.2 Assumptions 
In the mixture distribution analysis technique to be presented in this section, there are a few 
critical assumptions to be taken note of. One of the key assumptions is that the different 
failure mechanisms in the tested device are independent of each other and hence they do not 
influence the degradation or failure rate of each other. This assumption helps us in making 
use of the principle of superposition to model the overall mixture PDF. The other assumption 
we make is that the components of the mixture distribution belong to the same type of 
statistical distribution (e.g. Weibull, Lognormal etc…) and they are different only in the 
values of the distribution parameters that they take. Although this assumption is not 
necessary, it helps simplify the theory presented. Also, we assume that the number of 
distribution components in a given set of data is known apriori. There are various methods 
in the statistical literature that help estimate the number of distribution components in a 
given set of failure test data (Akaike, 1974; Bucar et al., 2004). However, they are beyond the 
scope of our study here. 

3.3 Mixture distribution theory 
Let us now take a closer look at the statistics underlying the mixture distribution theory 
(Titterington et al., 1985). For a device / system with n failure mechanisms each with its own 
failure distribution, the probability density function of the mixture distribution, fMIX(t), is 
given by (11) where {p1, p2, p3, …, pn} refer to the mixing weight or proportion of each 
component distribution in the overall mixture and fk(t) refers to the PDF of the kth 

component failure distribution; k Є [1, n]. 

 
(11)

Based on this expression, the mixture CDF is given by (12) where FMIX(t) refers to the overall 
mixture distribution CDF and Fk(t) corresponds to the CDF of each individual component 
distribution. The expression in (12) is obtained by a simple integration of (11) respect to 
time, t. 
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(12)

A similar expression to that in (12) may be written for the mixture distribution reliability 
function, RMIX(t) = 1 – FMIX(t). Based on the above expressions, the log-likelihood function 
(LLKL) for a mixture distribution may be expressed as in (13), where ψ = {φ1(1), φ2(1), φ1(2), 
φ2(2), …, φ1(n), φ2(n)} represents all the parameters of the n-component mixture distribution. 
The superscript (n) in the above notation refers to the index of each component distribution 
and n’ and r’ are the number of failure and censor data. 

 

(13)

 

For example, in the case of a Weibull n-component mixture distribution, ψ = {β1, η1, p1, β2, η2, 
p2, …, βn, ηn, pn} where β, η and p refer to the shape parameter, scale parameter and mixing 
weight of each component of the mixture distribution. Since every failure results from one 
of the n-component distributions, the sum of all the mixing weights must add up to 1 as 
shown in (14). A higher mixing weight for a particular component implies that the failure 
mechanism corresponding to it is more dominating than other existing secondary failure 
mechanisms. 

 
1

1
n

k
k

p
=

=∑  (14) 

Having developed the expression for LLKL, the optimal set of parameters in the set, ψ, are 
obtained by global maximization of the multi-dimensional LLKL function for which, as 
mentioned earlier, SA is one of the best techniques to use. The number of dimensions or 
independent variables in the LLKL function may be determined using (15) where n is the 
number of component distributions, r is the number of distribution parameters for each 
component distribution and m is the overall dimension of the objective function (LLKL) to 
be optimized. In (15), (r + 1) represents the number of distribution parameters accounting 
for the mixing weight p in addition to the standard parameters of the statistical distribution 
function. 

 ( 1) 1m n r= ⋅ + −  (15) 

In this section, a concise description of the mixture distribution theory has been provided. 
The usefulness and relevance of mixture distributions in device reliability analysis is 
highlighted. The log-likelihood function for the case of mixture distributions is developed 
and this well-defined objective function will next need to be optimized using the SA 
method. 
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The next section describes the SA methodology and its algorithm in sufficient detail along 
with an insight into the interesting origin of this method. This will then be followed by two 
case studies on applying SA to reliability analysis of two critical microelectronic device 
failure mechanisms viz. gate oxide failures and electromigration phenomenon. 

4. Application  of  simulated  annealing 
The methodology of Simulated Annealing can be traced back to the thermodynamic and 
kinetic processes of cooling, annealing and crystallization of materials such as metals and 
some liquids (Brooks et al., 1995). When the initial temperature of a material is high, the 
atoms in it have a high diffusivity such that they can hop around to various lattice positions 
with different energies. When the temperature is reduced slowly or under conditions of 
slow cooling or gradual annealing, the atoms have sufficient time to diffuse and find lattice 
points of subsequently lower energies. Even if an atom happened to settle down at an 
intermediate local energy metastable equilibrium, the slow cooling and high initial 
temperature of the material system ensure that the atom overcomes the kinetic activation 
barrier to jump from the local energy equilibrium well and enter into the well that could 
possibly contain the global energy minimum. Note that any material would always want to 
globally minimize its Gibbs free energy and reach the most stable equilibrium state if 
sufficient time is provided for such a phenomenon to occur. Eventually, as this process of 
slow cooling is continued and as we let the material system equilibrate at each of the 
stepwise reductions in the ambient temperature, the atoms are most probable to have 
entered the energy well containing the global minimum and finally attain the global 
minimum energy level at sufficiently low temperatures. These low temperatures at later 
stages of the cooling (annealing) schedule are required in order to ensure that an atom 
which has entered the global energy minimum well does not jump out of it again. 
In contrast, if the rate of cooling was rapid (also called quenching), then the atoms are most 
likely to settle down at local minimal energy metastable equilibrium states, which could 
result in the formation of polycrystalline or amorphous structures as opposed to crystalline 
structures that would result during a slow cooling process. Therefore, in order to reliably 
attain a global minimum energy state, two things are necessary – (A) High initial 
temperature (T0) and (B) Slow rate of cooling. 
Fig 4 (a) – (c) clearly illustrates the various transitions of atomic energies that could take 
place at a high initial temperature of T0, lower intermediate temperature, TK and final 
temperature of T∞ under slow cooling rate conditions. Fig 5 shows the case of rapid cooling 
that results in a metastable local equilibrium. These figures supplement the explanation 
above and hopefully give a clear and simple illustration of the physics of annealing. 
Based on the kinetics of annealing described above, the above concept has been adopted in 
optimization literatures as simulated annealing. The energy of the atom is analogous to the 
value of the objective function to be optimized. The position and movement of the atom is 
analogous to the parameter settings and shifts in its values as the optimization is carried out. 
The concept of temperature is adopted as it is using the Boltzmann criterion here and we 
could call the temperature as the “mathematical temperature” of the optimization system. 
Having understood the origin of simulated annealing as an optimization procedure and its 
analogy to the physical cooling phenomenon, we shall now get acquainted with some of the 
common terminologies that we will be using in this section and then proceed on to explain 
the annealing algorithm in an easy to understand fashion. 
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Fig. 4. (a) – (c): Illustrating the energy transitions of an atom in a material which undergoes 
slow cooling from a high initial temperature of T0. Note that the basic sketch of the figure 
has been adopted from (Press et al., 2002). The numbers in circles represent the successful 
energy transitions from one state to the other. 
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Fig. 5. Illustrating the energy transitions of an atom in a material which is subjected to rapid 
cooling that prevents it from entering the global energy minimum well. The atom finally 
attains a local metastable equilibrium state. Note: The basic sketch of the figure has been 
adopted from (Press et al., 2002). The numbers in circles represent successful energy 
transitions from one state to the other. 

4.2 Terminologies 
Different authors use different terminologies to refer to the same parameter in the field of 
simulated annealing. Therefore, it is necessary to familiarize ourselves with the terms that 
we will be using in our approach to designing the SA algorithm. Let us now look at some of 
these terminologies: 
• Temperature Reduction Coefficient (λ) – Since the accuracy of reaching the global 

minimum in SA depends on the rate of cooling, it is necessary to define rate of cooling as 
an input parameter of the SA algorithm. 

 (16)

• Initial Temperature (T0) – As mentioned earlier, we define the so-called “mathematical 
temperature” of a system analogous to the physical temperature in a kinetic process. 
The initial temperature for optimizing an objective function (such as the LLKL in our 
case) has to be kept high and it could be set to the approximate range of variation of the 
objective function which can be determined by a random space search of the objective 
function value for different input parameter combinations. Note that a precise value for 
T0 is not required. We only need to specify a reasonable value for it that would ensure a 
successful SA algorithm run and a good start for this would be to set T0 to the range of 
the objective function. We have been advocating that a high value of T0 is essential for 
the SA to attain the global optimum value. It should be realized however that setting 
too high a value for T0 makes the SA inefficient as it takes a longer time to reach the 
global optimum in this case. Very high values of T0 make SA less preferred as it implies 
slower processing speed, larger memory requirements and increased computational 
load, all of which are undesirable. There is no hard and fast rule for setting the T0 value. 
However, good judgment should be exercised when a user sets a value for it. 
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• Markov Chain Iteration Number (N) – This refers to the number of random space 
searches for the objective function at every temperature value. For every temperature 
the SA algorithm performs N random space searches in order to approach towards the 
global minimum. This sequence of N searches in the space spanned by the parameters 
is considered a Markov Chain. The value of N is to be set by the user and it should be set 
such that a quasi-static equilibrium state is reached at each temperature before 
transiting to the next lower temperature. 

• Objective Function (EJ) – As discussed at the end of Section 2, the function to be 
optimized is called the objective function and we denote it by EJ here where E is the 
equivalent of energy in the physical annealing scenario described earlier and J is the 
index of the function which means EJ is the value of E after J successful state transitions 
from the initial value of E = E0 at time t = 0. 

• All the objective functions that we would be optimizing are to find the global minimum 
although SA could be easily tuned to find the global maximum too. This is because it is 
easier to interpret SA for global minimization given its analogy to Gibb’s energy 
minimization of the atoms in a material. Therefore, if any of the functions (such as LLKL 
in our case) need to be maximized, then we can tune the objective function so that it is 
to be minimized. As an example, instead of maximizing the log-likelihood function 
(LLKL), we could equivalently minimize its negated function (-LLKL) since the 
maximum of a function is the same as the minimum of its negative 

• Boltzmann Theorem of Statistical Physics – The probability that a system is in some 
state with energy E is given by (17) where kb is the Boltzmann’s constant and Z(T) is 
normalization  function (Brooks et al., 1995). 

 
(17)

• Metropolis Acceptance Criterion (MAC) – In the physical process of annealing, 
Boltzmann’s  theory suggests that an atom could temporarily move from a lower 
energy state to a higher energy state at times in order to jump out a local minimum 
energy well in search of the well containing a global minima, although the probability 
of such jumps to higher energies is quite low. Applying this analogy to our 
mathematical optimization system, the probability that the system transits from a lower 
objective function value (EJ) to a higher objective function value (EJ+1); EJ+1 > EJ is given 
by (18) where Δ = (EJ+1 - EJ). Since the accuracy of reaching the global minimum in SA 
depends on the rate of cooling, it is necessary to define rate of cooling as an input 
parameter of the SA algorithm. 

 

(18)

The Metropolis Acceptance Criterion (MAC) suggests that a state transition from a lower 
value (EJ) to a higher value (EJ+1) will successfully occur if and only if the probability 
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of such a transition as given by (18) is more than the random number U generated from 
a uniform distribution with end limits 0 and 1. In short: 

 
(19)

With all the terminologies involved in the SA algorithm listed out and interpreted we know 
that the three main input parameters for executing SA are λ, T0 and N. Having familiarized 
with these notations and their meaning, we can now dive straight into the stepwise 
procedure to be adhered to in implementing the actual SA algorithm. 

4.3 Annealing algorithm 
The stepwise execution of the annealing algorithm is as follows: 
1. For every input parameter, φr, of the objective function, E(φ1, φ2, φ3, …, φr), define the 

range of values [φrMIN, φrMAX] that each of these parameters can take. This range could be 
guessed by the user’s intuition or it could be set as wide as possible based on the realistic 
limits the parameters could take. For example, the obvious lower and upper limits for the 
mixing weight in the log-likelihood function has to be 0 and 1 respectively since it is a 
proportional quantity. If the user has some prior knowledge of the parameters of the 
objective function, then a narrower range can be defined for the parameters and this 
would help reduce the size of the parameter space to be spanned for locating the 
optimum and could help to reach the global minimum faster. Therefore, a narrow range 
for the parameters would be very useful in improving the efficiency of the SA algorithm. 

2. Determine the initial value of temperature, T0, by performing a random space search 
over the parameter subspace and finding the range of the objective function values 
obtained. Set this range to the value of T0 as indicated in (20). 

 0 MAX MINT E E≡ −  (20) 
3. Set the values for the parameters λ and N. Typical values for λ range from 0.75 to 0.95 

while for N, which is the number of markov state transitions for every temperature, 
values ranging from 1000 to 5000 can be set as a good rule of thumb. 

4. At the initial temperature of T = T0, start with an initial guess of the objective function 
E0 by using some randomly generated combination of values for the input parameter 
based on the range defined for them. 

5. Compare this value of E0 with another randomly generated objective function value, E1 

and do the following: 
                                                      IF E1 < E0 
                                                      → Transit from State E0 → E1. 
 

                                                      ELSE-IF (E1 > E0) and MAC criterion is satisfied  
                                                      → Transit from State E0 → E1.  
 

                                                      ELSE  
                                                       → Remain in State E0 
                                                       → Repeat the above steps for a different value of E1 .  
 

                                                       END 
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6. The above pseudo code is iteratively followed N times for the initial temperature, T0. If a 
transition takes place from EJ → EJ+1 based on the above criteria, we call the transition a 
successful transition. Else, if some iteration does not lead to any transition to a different objective 
function value, then we refer to it as an unsuccessful transition. For the given temperature, T0, the 
fraction of successful state transitions or what we call success ratio, Ω is recorded. 

7. Based on the annealing schedule defined by the temperature reduction coefficient in 
(16), transit to the new lower temperature of T1 = λ • T0 and follow steps (5) and (6) 
iteratively N times. 

8. This temperature reduction takes place sequentially and as steps (5) and (6) are 
executed for K successive cycles of temperature transitions, the objective function enters 
the global minima well and slowly approaches the global minimum point. 

9. During the initial high temperature conditions, the Boltzmann probability is expected to be 
high and therefore, the MAC criterion is likely to be accepted most of the time thus resulting in 
a high value for the success ratio, Ω. However, as temperatures are reduced, MAC criterion is 
rarely satisfied and further transitions to lower objective function values also becomes less 
likely thus causing the Ω value to decrease. Eventually, after a large number of temperature 
cycles, we would reach a stage when the Ω value could be as low as 0.0001 which means that 1 
in every 10000 transitions is successful. Such low values of Ω clearly indicate that the objective 
function has approached very close to the global minimum. In such a case, further algorithm 
execution is no longer necessary and the SA routine can be stopped. Therefore, the Ω 
parameter helps us define a stopping criterion that dictates the end of the SA routine code. 
Typically, we set values of Ω = 0.0001 (1 × 10-4) or 0.00001 (1 × 10-5). 
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The SA algorithm execution explained above may be summarized in the form of a simple 
pseudo code as shown. The readers should by now have realized that the SA algorithm is a 
very easy to understand and simple to implement technique, yet so powerful in its ability to 
perform multi-dimensional global optimization. Note that for our case of mixture 
distribution analysis, the objective function, E, above would be replaced by the log-
likelihood function (LLKL) defined earlier in (13). 

4.4 Benefits and drawbacks of simulated annealing 
Simulated annealing is a very powerful technique since it enables optimization of any n-
dimensional objective function. It is one of the very few methods that can reliably find the 
global minimum or maximum value as desired. It is easy to comprehend and can be 
implemented using a simple C program code without any complexities. Another advantage 
of this approach is the gradient insensitivity since it does not optimize the function by 
taking its derivative unlike other methods such as the Newton-Raphson for example. 
Therefore, SA would be able to work for functions which have singularities and also non-
analytical functions which might not have a closed form. 
There are however, a few drawbacks in using the SA method. It is highly dependent on the 
initial temperature, T0. For very large values of T0, the algorithm might take too long to 
converge. Compared to other optimization techniques, it is more computationally intensive 
and relatively slow. The computational time scales exponentially with the dimensions of the 
objective function to be solved. We have been mentioning that the SA method converges to 
the global minimum as the success ratio, Ω, attains a very low value such as 0.0001. It should 
be noted that Ω ≠ 0 implies that there is still a possibility of a lower value existing in the 
global minima well which could not be found by the random searches performed. 
Therefore, although the SA method helps approach the global minima, it may not 
necessarily reach the exact optimum point. 
These drawbacks necessitate the use of other local optimization algorithms in conjunction 
with the SA method so that the exact global minimum may be located (Tan et al., 2007a). 
Also, in order to get around the problem of long execution times of SA, approaches to 
localize the search of the parameter subspace during the later executions when the global 
well might have been found could be investigated. A combined global – local search method 
would help make SA more efficient than its simplest version implemented above. These 
techniques to improve the SA algorithm will be briefly touched upon in Section 6. In the 
next section, we show the application of the SA algorithm to two real case studies on the 
reliability analysis of electronic device failure mechanisms viz. gate oxide breakdown and 
electromigration. 

5. Case study – microelectronic device reliability 
The very first attempts to apply Simulated Annealing for reliability analysis in microelectronic 
devices was taken up by Tan et al., (2007a, 2008). This section brings out the application of 
SA into microelectronics reliability. 

5.1 Gate oxide breakdown in MOSFETs 
5.1.1 Physics of gate oxide breakdown 
The progress in the electronics industry has been accelerating exponentially after the 
advancement of semiconductor technology and materials. In order to achieve higher 
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computational capability and more compact portable devices, transistor dimensions are 
being downscaled rigorously from a 2 μm technology a decade ago to a 45 nm technology 
today in accordance to Moore’s Law (ITRS, 2007). Downscaling of devices involves the 
proportionate shrinking of all the dimensions of the device in accordance to the constant 
field scaling rule (Taur et al., 1998) including the gate oxide which is a thin insulating layer 
between the polysilicon gate and the silicon substrate in a conventional transistor as shown 
in Fig 6. 
 

 
Fig. 6. Schematic of a MOS transistor showing the gate oxide layer sandwiched between the 
polysilicon gate and the Si substrate. 

Although downscaling of device dimensions has helped realize faster and smaller electronic 
gadgets, we have reached the limit of downscaling where the gate oxide thickness is as low 
as 3 – 5 Å which is just one or two monolayers of the insulating material. Such thin oxides 
result in high leakage currents from the gate (G) to the substrate / body (B) due to 
percolation paths being formed that connect the two terminals. Moreover, during deposition 
of gate oxide using processes such as atomic layer deposition, some defects may be 
introduced in the oxide as a result of imprecise manufacturing or non-optimized processing. 
While these induced defects cause extrinsic failures of the device, the gradual formation of a 
percolation path in a perfect gate oxide layer could cause intrinsic failures. These intrinsic 
and extrinsic failure mechanisms consist of different distribution parameters although both 
of them belong to the Weibull distribution since gate oxide breakdown is catastrophic in 
nature. Therefore, based on physical considerations and previous failure analysis 
investigations, gate oxide breakdown can be characterized by a bimodal mixture 
distribution (Degraeve et al., 1998). We shall make use of our SA approach to maximize the 
LLKL function for a two-component two-parameter Weibull mixture distribution. 
The details of the test performed and the data collected are presented next. This will be 
followed by the results showing the application of SA to gate oxide failure data and final 
conclusions on the reliability of the tested gate oxide will be provided. 

5.1.2 Accelerated life testing 
A total of 51 MOS capacitor devices were subjected to an accelerated test at a high electric 
field stress of 10.4 MV/cm (Tan et al., 2007a). The test was terminated at 207.5 s and 44 
failures were observed. The remaining 7 devices either did not fail or were removed from 
the test prior to failure for other reasons. These 7 devices are considered as “censored”. 
Based on the conducted test, the TTF data is obtained as shown in Table 1. The censored 
times of 4 devices removed from the test prior to failure are 0.15, 2.5, 19.03 and 120.21s. 
Three other devices remained operating at the test termination time of 207.5 s. 
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Table 1. Gate oxide breakdown failure data obtained from the accelerated life test (Tan et al., 
2007a). 

5.1.3 Simulated annealing applied… 
For a bimodal Weibull distribution, the mixture PDF, fMIX(t) may be expressed as in (21) 
where β and η are the shape and scale parameters and p is the mixing weight or proportion 
of each component distribution. The LLKL function is expressed as in (22). Note that there 
are 5 independent parameters to be determined in this function. They are η1, η2, β1, β2 and 
p1. The mixing weight of the second component distribution, p2 is dependent on p1 since p1 + 
p2 = 1. Therefore, the SA optimization routine in this case comprises of five dimensions. 
Instead of maximizing the LLKL function, we shall be minimizing the negated –LLKL 
function using the standard SA algorithm as prescribed in the previous section. 

 (21)

 

(22)

Table 2 shows the range of values that are set for each of the 5 parameter in the LLKL 
function. As discussed earlier, the range for the mixing weight is set to its default lower and 
upper limits of 0 and 1 respectively. A good precise range can be defined for these 
distribution parameters based on the user’s understanding of the failure data and its spread. 
The SA routine is now executed as usual and the results of the algorithm are shown in Table 
3 which gives the optimal values of the distribution parameters and also indicates the total 
number of attempted transitions in reaching the global minimum as a guide. Notice that it 
has taken 82,446 space search attempts to reach the optimum point from the initial random 
guess. Fig 7 shows the decrease in the success ratio (Ω) as the temperature is reduced. The 
number of temperature cycles T0 → T∞ needed was 58. 
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Table 2. Range of values defined for the input parameters of the log-likelihood objective 
function in the SA algorithm. 

 
Table 3. Optimal values of the distribution parameters after the SA algorithm execution. 
 

 
Fig 7. Drop in success ratio as the temperature is reduced and the global minimum is 
approached. The SA routine is stopped when Ω < 0.01%. 
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The trend of the log-likelihood function convergence during the SA algorithm execution for 
every successful Markov transition was traced out and this convergence trend is clearly 
evident in Fig 8. Note from the abscissa of this figure that the total number of successful 
Markov transitions was around 43,000 out of the 82,446 attempts. 
 

 
Fig 8. Convergence of the negative log-likelihood function (-LLKL) to the global minimum 
(Tan et al., 2007a). 

5.1.4 Reliability analysis results 
5.2.1 Electromigration physics 
Another key reliability concern in the microelectronics industry is the electromigration (EM) 
phenomenon in which the momentum exchange between the high speed electrons and the 
atoms in an Al or Cu metallization results in the movement of the atoms along with the 
electrons from the cathode (-) to the anode (+) thereby leading to void formation at the 
cathode ends causing high resistance and possibly open circuit and at the same time hillock 
formation at the anode terminal due to accumulation of metal atoms that could cause a short 
circuit if the hillock happens to protrude into the neighboring metal line. This electron wind 
force induced atomic migration is known as electromigration (Tan et al., 2007b). Since the 
process of void nucleation and void growth is gradual, the statistical nature of EM is well 
represented by the Lognormal distribution (Tobias et al., 1995, Tan et al., 2007c). 
Physical evidence reveals that there are potentially two regions in the interconnect structure 
where high current densities could cause voids to nucleate. These are at the inter-line via 
and the interconnect line itself. The voids tend to nucleate earlier in the via because of its 
lower cross-section and hence higher current density. The void formation in each of these 
two locations implies that each failure site has its own Lognormal distribution. Therefore, 
the overall statistics describing the EM phenomenon would involve a bimodal lognormal 
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distribution (Raghavan et al., 2007; Tan et al., 2007d). Fig 10 shows a simple schematic of the 
interconnect test structure where voids are formed. 
 

 
Fig 9. Cumulative Weibull probability plot of the gate oxide breakdown data showing a 
good fit (Tan et al., 2007a). 
 

 
Fig 10. Void nucleation sites at the via and line during the EM phenomenon corresponding 
to a  bimodal failure distribution (Tan et al., 2005). 

5.2.2 Accelerated life testing 
Experimental EM test data was obtained by performing accelerated package-level EM tests 
on aluminium via-line test structures with a current density stress that is ten times the 
nominal value and a stress temperature of 1750C. The total number of failure data obtained 
was 26 and there were 6 censored data in this time-terminated test, indicated with an 
asterisk (*) in Table 4. 
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Table 4. Accelerated EM test data on an Al via-line test structure (Raghavan et al., 2007). 

5.2.3 Simulated annealing applied… 
For a bimodal Lognormal distribution, the mixture PDF, fMIX(t) is given by(23) where t50, σ 
and X0 are the median life, shape parameter and incubation times of the failure process 
respectively and p is the mixing weight or proportion of each component distribution. The 
LLKL function is expressed as in (24). Notice that in addition to the standard two parameters 
t50 and σ in a Lognormal distribution, we have introduced a third parameter called 
incubation time (X0) (Tan et al., 2008). This third parameter refers to the time before which 
no void nucleation occurs in the EM phenomenon. In statistical literature, X0 is referred to as 
the failure-free time. The effect of X0 on the PDF of a lognormal distribution is shown in (25). 
This is called a 3-parameter Lognormal distribution. Each failure mechanism (void and line 
failure) is expected to have its own failure-free time (X0). 

 (23)

 

(24)

 

(25)

 
 

For the LLKL function in (24), there are 7 independent parameters whose optimal 
combination needs to be found. They are t50(1), σ1, X0(1), t50(2), σ2, X 0(2)and p1. The mixing 
weight of the second component distribution, p2 is dependent on p1 since p1 + p2 = 1. Since 
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the SA routine here is 7-dimensional as opposed to the 5-dimensional case when we 
investigated the gate oxide failures, the SA algorithm is expected to take longer time and 
more transition attempts would be required to find the global optimum of LLKL. As usual, 
instead of maximizing the LLKL function, we shall be minimizing the negated –LLKL 
function. 
Table 5 shows the range of values that are set for each of the 7 parameters in the LLKL 
function. The SA algorithm is executed based on the parameter space defined in Table 5 and 
the critical values of the parameters that optimize LLKL are found. The results are depicted 
in Table 6. Notice that it has taken 620,000 space search attempts to reach the optimum point 
from the initial random guess. Out of these, 314,000 attempts resulted in successful state 
transitions. Fig 11 shows the decrease in the success ratio (Ω) as the temperature is reduced. 
The number of temperature cycles T0 → T∞ needed was 178. 
 

 
Table 5. Range of values defined for the input parameters of the log-likelihood objective 
function in the SA algorithm. 

 
Table 6. Optimal values of the distribution parameters after the SA algorithm execution. 

The trend of the log-likelihood function convergence during the SA algorithm execution for 
every successful Markov transition was traced out and this convergence trend is as shown in 
Fig 12 which indicates the number of successful state transitions is 314,000. 
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5.2.4 Reliability analysis results 
Based on the optimal values of the parameters obtained in Table 6, the cumulative 
probability plot of the failure data and the fitting line were represented on a Lognormal plot 
as shown in Fig 13. As seen in the plot, a very good fit of the data has been obtained and this 
is clearly indicative that the SA algorithm has approached the global minimum. 
 

 
Fig. 11. Drop in success ratio as the temperature is reduced and the global minimum is 
approached. The SA routine is stopped when Ω < 0.01%. 
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Fig 12. Convergence of negative log-likelihood function (-LLKL) to the global minimum for 
the bimodal lognormal distribution. 

 
Fig 13. Cumulative bimodal Lognormal probability plot for the electromigration ALT test 
data showing a good fit (Tan et al., 2007d). 

The two case studies presented above have clearly illustrated the application of simulated 
annealing in reliability analysis. The reader should now be convinced that SA is indeed a 
very powerful optimization tool which comes in handy for log-likelihood optimization in 
mixture distribution analysis. Statistical literatures in the past have indicated that the 
conventional Newton-Raphson and similar techniques could be used to locally optimize 
LLKL only if all the components of the mixture distribution belong to the same type of 
statistical distribution (e.g. Lognormal, Weibull etc…) (Jiang et al., 1992). They suggest that if 
different components of the mixture belong to different classes of statistical distributions, 
then optimization is a very difficult task. This difficulty is however overcome with ease 
when SA is used. Irrespective of the classes of distributions in the mixture, SA can reliably 
locate the global optimum value. 
As discussed in Section 4.4, there has been a lot of research focusing on techniques to 
improve the efficiency of the SA algorithm. The algorithm that we have made use of is the 
simplest version of its kind. Although it is effective in finding the solution, it is not as efficient 
as we would want it to be. Most of the SA simulations for the case studies above took 
around 5 – 15 minutes using a Pentium II microprocessor, which is quite a long time 
considering practical situations where optimization might have to be performed very 
frequently. 
We shall now briefly sketch out the recent efforts that have been undertaken towards 
improving the efficiency of simulated annealing. 
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6. Techniques  to  improve  algorithm  efficiency 
Since SA takes a long time to approach the global optimum value especially for objective 
functions with many dimensions (parameters), some researchers have proposed the use of 
hybrid approach (Brooks et al., 1995) whereby the SA is used only to enter the global well 
containing the optimum point. Once, the SA helps the objective function to enter into the 
global well, we switch over to conventional local optimization methods such as Simplex 
search, Newton-Raphson etc… which are highly efficient in exactly locating the local 
optimum. This approach would obviously work because the local optimum in a global well 
in fact corresponds to the global optimum. The usefulness of this approach is that it reduces 
the computational time and also helps locate the exact optimum point unlike SA which is 
capable of only approaching the optimal point in most cases. However, the problem of using 
this hybrid approach lies in determining the number of temperature shift downs after which 
the SA execution must be halted such that it has already entered the global well. This is a 
difficult question to answer. 
However, successful attempts of using this approach have been carried out in the past 
(Brooks et al., 1995). We investigated the suitability of this approach to our analysis on gate 
oxide breakdown (Tan et al., 2007a) in the previous section. We halted the SA routine after a 
sufficiently long time and then used the Expectation – Maximization (E&M) algorithm (Jiang 
et al., 1992) which uses the Newton-Raphson method to locate the local optimum of the log-
likelihood function. Using this approach, we found that the fitting of the data improved 
considerably and a very accurate fit was obtained as shown below in Fig 14 in contrast to the 
fitting using SA alone in Fig 9. This is a clear indicator that a hybrid approach would be very 
useful to improve the efficiency as well as to locate the optimal point precisely. 
 

 
Fig 14. Cumulative bimodal Weibull probability plot for gate oxide breakdown failure data 
using the HYBRID SA approach (Tan et al., 2007a) The fit to the data has improved 
considerably after the hybrid approach was implemented. 
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7. Conclusion 
In spite of the robustness of the SA algorithm, there are still many improvements needed in 
order to improve its efficiency. This could be done using novel hybrid approaches as 
mentioned in Section 6 or using better localized space search techniques. 
This chapter only gives a taste of the most basic form of Simulated Annealing. Other 
advanced implementations of SA have been successfully demonstrated in the recent past. 
This includes use of efficient algorithms to localize the space search around the global well 
and combining SA with other optimization approaches such as Genetic Algorithms and 
Neural Networks. For a comprehensive outlook into the novel forms of SA, interested 
readers may refer to (Goffe et al., 1994; Yao., 1995; Bolte et al., 1999; Suman et al., 2006) for 
additional information. These sources will serve as a useful resource for heading towards 
further research in this field. 
We have developed an in-house stand-alone reliability software called MiDiAn Soft TM 
which has been developed to apply SA to reliability analysis and the results presented in 
Section 5 were based on the developed software package. 
This chapter provides a good insight into the application of simulated annealing for mixture 
distribution analysis in the field of reliability engineering. We started of by talking about the 
need and importance of reliability in the manufacturing sector. The fundamentals of 
reliability statistics were introduced in Section 2 and the need for an accelerated life test was 
highlighted. The section on reliability math led us through to the log-likelihood function 
which needed to be globally optimized. We then established the link of simulated annealing 
in the context of reliability analysis and suggested the use of SA as a potential tool for global 
maximization of log-likelihood. The concept of mixture distribution was brought up in 
Section 3 and the log-likelihood expression was suitably modified to account for the 
presence of multiple failure mechanisms (multiple component failure distributions). A 
comprehensive yet simplified outlook into the simulated annealing algorithm was presented 
in Section 4 and this included a useful discussion on how the idea of annealing was 
borrowed from the thermodynamics inherent in the annealing process of materials. Having 
dealt with the theory of SA, we investigated two practical case studies in Section 5 from the 
field of microelectronic devices to clearly illustrate the application of SA to reliability 
analysis. Finally, a brief description of the approaches to modify SA so as to make it more 
efficient was presented. 
We hope this chapter helped the reader realize and understand the robustness of the 
Simulated Annealing (SA) technique and its potential widespread applications in the field of 
reliability engineering. This chapter has been written with the intention to inspire reliability 
engineers to make best use of the Simulated Annealing approach.  
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1. Introduction     
As semiconductor process technology relentlessly advances into deeper submicron feature 
sizes following the Moore’s Law, the cost of mask tooling is growing inexorably, up to 1, 1.5, 
and 3 million dollars for 90nm, 65nm, and 32nm process technology, respectively (LaPedus, 
2006). Basically, the majority of smaller fabless integrated circuit (IC) design houses can 
hardly afford to have one mask set per design just for prototyping or low-volume 
production. In this circumstance, multiple project wafer (MPW) fabrication (or called shuttle 
run), long being used as a low-cost mechanism by the academics or industries (Pina, 2001; 
Morse, 2003) for prototyping their innovative designs, has become an indispensable chip 
fabrication vehicle. By way of an MPW program, the mask cost can be amortized among 
various designs placed in the same reticle (i.e., the same mask). Despite of assuming a lower 
mask cost per design, MPW requires each design to share more wafer fabrication cost. To 
minimize MPW wafer fabrication cost, the chips participating in a shuttle run should be 
properly placed in a reticle. This gives rise to the reticle floorplanning problem. Moreover, 
the wafers must be properly sawn to maximize the dicing yield. This gives rise to the 
simulated wafer dicing problem. 
In this chapter, we propose several approaches based on simulated annealing (SA) to 
solving reticle floorplanning and simulated wafer dicing problems. Since SA’s introduction 
(Kirkpatrick et al., 1983), it has played an important role in electronic design automation 
(Wong et al., 1988) such as circuit partitioning, placement, routing, etc. Many commercial 
physical design tools of this sort often employ SA as the last resort to optimize a design. The 
reasons for using SA are due to its ease of handling hard-to-be-satisfied constraints by 
transforming them into part of the objective function and a higher probability of finding a 
global optimum solution enabled by the capability of escaping local optima in practical 
implementations. Besides, an objective function for SA can be non-analytic or even does not 
have a closed-form expression so that it can only be evaluated using a non-calculus 
approach. Our simulated wafer dicing problem, though not having any hard-to-be-satisfied 
constraints, has a non-analytic objective function which makes SA quite suitable for solving 
this problem. Our reticle floorplanning problem has an even more difficult objective 
function which is the number of wafers required to be fabricated for a shuttle run and can 
only be evaluated using simulated wafer dicing. Despite of being able to handle non-
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analytic objective function, SA should not employ a hard-to-be-evaluated objective function 
because it would take too much time just to calculate the objective function for each new 
solution generated in the search process. To cope with this difficulty, we need to find a 
simple objective function that can best correspond to the original one, i.e., transforming the 
original objective function into a simpler one. Therefore, rather than solving a complicate 
simulated wafer dicing problem, we devise a much simpler objective function for our reticle 
floorplanning problem. Although we can not guarantee an exact correspondence between 
optimal solutions in the original problem and the one with a simpler objective function, such 
a transformation generally enables us to find a sufficiently good solution in a short time.  
Another key factor to successful applications of SA is about solution encoding. If a solution 
encoding could theoretically make SA reach every solution in the solution space, such 
solution encoding is certainly the best. However, if a solution encoding can not make this 
happen, the subspace defined by such solution encoding should include at least one global 
optimum. Unfortunately, we normally do not have such kind of insight. The two solution 
encodings used for our reticle floorplanning are no exception. However, both of them have 
their own edges. One enables SA to find a solution with a minimum number of wafers 
fabricated, whereas the other enables SA to find a solution with a smaller reticle area and 
with the number of required wafers very close to that of the former. The experimental 
results show that our approach when compared to the previous work (Kahng et al., 2005) 
not only achieves a double-digit saving in the number of wafers fabricated per shuttle run, 
but also produces a reticle floorplan with considerably smaller reticle area. This means a lot 
of saving in mask tooling and wafer fabrication costs. 
Although minimizing the number of wafers fabricated in a shuttle run is often a good 
objective for reticle floorplanning, a minimum wafer use does not necessarily mean a 
minimum-cost wafer fabrication (not including mask tooling cost), not to mention a 
minimum-cost shuttle production (including mask tooling cost). Reticle floorplanning for 
cost minimization is a multiple objective optimization problem where the mask tooling and 
wafer fabrication costs are two conflicting goals (Bonn, 2001). Minimizing mask tooling cost 
favors a smaller reticle size (the smaller the reticle, the less the mask tooling cost, as shown 
in Figure 1), but this would pack chips closely within a reticle and hence create excessive 
sawing conflicts. As a consequence, more wafers must be fabricated. On the other hand, an 
attempt to align chips in a reticle to reduce sawing conflicts often requires a larger reticle 
and hence increases the mask tooling cost. Our reticle floorplanning method has a 
coefficient in the SA’s objective function that can be explored to find a solution balancing 
these two objectives. We have employed our reticle floorplanning and simulated wafer 
dicing methods to perform a reticle design space exploration for finding a minimum-cost 
solution (Lin et al., 2007). In this article, we will not discuss this issue any further. Our 
presentation will focus on using SA for solving reticle floorplanning and simulated wafer 
dicing problems with an objective of minimizing the number of wafers fabricated. A lot of 
the material presented here can also be found in our previous work (Lin et al., 2007; Wu & 
Lin, 2007; Wu et al., 2008). For ease of presentation, we will use chip, project, and design 
interchangeably in this article. 
The rest of this chapter is organized as follows. In Section 2, we elaborate on simulated 
wafer dicing and reticle floorplanning problems and their related work. In Sections 3 and 4, 
we present our SA implementations for these two problems, respectively. In Section 5, we 
draw a conclusion for our work. 
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Fig. 1. Mask set cost for various field sizes for a 90nm technology node assuming that a chip 
has 8 very critical layers, 8 critical layers, and 12 non-critical layers (Pramanik et al., 2003) 

2. Problem definition and related work 
2.1 Problem definition 
Here, we will give a problem definition of simulated wafer dicing and reticle floorplanning 
problems, respectively. Before doing this, we briefly describe how an MPW wafer is 
fabricated. Figure 2 shows a simplified wafer lithography apparatus. A reticle is placed 
between a condensing and a projection lens. The patterns in the reticle are exposed to the 
light so that a copy of these patterns can be transferred to the wafer during exposure. We 
call the region that has the patterns formed per exposure a field. The above process is 
repetitively executed to form an array of fields on a wafer. Normally, there is a 4X or 5X 
reduction in dimensions for the patterns printed on the wafer, i.e., the field dimensions are 
1/4 or 1/5 of the reticle dimensions.  
Prior to wafer fabrication, we need to know the number of wafers that must be fabricated. If 
a reticle contains multiple copies of the layout design for only one chip, these copies are 
normally arranged into an m-by-n matrix so that the number of wafers that must be 
fabricated can be easily determined. However, this cannot be done easily for MPWs because 
the chips in a reticle cannot usually be arranged into an m-by-n matrix, as shown on the left 
of Figure 3. In this situation, wafer sawing done to obtain dice for a chip may destroy many 
dice for other chips. This complicates the calculation for the number of wafers that must be 
fabricated. Therefore, simulated wafer dicing must be performed to determine the number 
of required wafers. In simulated wafer dicing, wafer sawing is tentatively performed on an 
MPW to determine which dice will be obtained. Normally, a sawing line must run across 
from one side of a wafer to the other side of the wafer, without stopping at the middle of the 
wafer. This requirement is called the side-to-side dicing constraint. To yield a good die, sawing 
should be performed at each of the four borders of a die with no other sawing line running 
across it. The example in Figure 3 shows that we can employ sawing lines v1, v2, v3, h1, h2, 
and h3 to obtain three good bare dice respectively for chips 4, 5, and 8, but this also destroys 
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the dice for chips 6, 7, and 10. Although the dice for chips 1, 2, 3, and 9 are not destroyed, 
they are discarded due to a difficulty packaging them. The sawing lines made for a reticle 
(field) form a reticle dicing plan. All of the reticle dicing plans used for sawing a wafer form a 
wafer dicing plan (Kahng et al., 2004). Because of the side-to-side dicing constraint, all of the 
fields on the same row (column) will have the same horizontal (vertical) dicing plan. The 
problem is how to choose a set of reticle dicing plans to maximize dicing yield per wafer 
and thus minimize the number of wafers fabricated for a shuttle run. Figure 4(a) shows a 
wafer dicing plan that yields six dice per wafer respectively for the four chips 1, 2, 3, and 4 
contained in a reticle. Given that the required production volumes are 24, 48, 24, and 48 dice 
for chips 1, 2, 3, and 4, respectively, the number of wafers needed is eight. However, the 
number of wafers is reduced to six if the wafer dicing plan in Figure 4(b) is used. The 
simulated wafer dicing problem is formally defined below. 
Simulated Wafer Dicing Problem (SWDP): Given a reticle floorplan of N chips and the required 
production volume Vp for chip p, p=1..N, determine the wafer dicing plan for each of the Q wafers 
under the side-to-side dicing constraint such that the number Bp of good bare dice is greater than or 
equal to Vp and Q is minimized. 
 

 
Fig. 2. Wafer lithography 
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Fig. 3. A multi-project wafer 
 

 
Fig. 4. Two wafer dicing plans (good dice in darker color (green)) 

Reticle floorplanning determines the positions of the chips in a reticle and thus has a 
profound effect on dicing yield. Figure 5 shows another reticle floorplan along with a dicing 
plan for the same chips given in Figure 4. This reticle floorplan has a smaller size, but the 
dicing plan yields only 2, 6, 4, and 4 dice per wafer for the four chips, respectively. For the 
same required production volumes as above, 12 wafers need to be fabricated. As one can 
see, reticle floorplanning has a great influence on the number of required wafers. Our reticle 
floorplanning problem is formally defined below. 
Reticle Floorplanning Problem (RFP): Given a set of N chips and their required production 
volumes Vp, p=1..N, determine the coordinates of the chips such that the number of wafers used to 
attain the required production volumes of these chips is minimized on the condition that no chips 
overlap and all the chips are inside the reticle whose dimensions are not larger than the maximally 
permissible values. 

2.2 Related work for SWDP 
In the past, a few simulated wafer dicing methods have been proposed (Xu et al., 2004; 
Kahng et al., 2004; Chen & Mak, 2006). These methods, distinguished by the ways of 
satisfying required production volumes, are classified into two groups. The first group, as 
suggested in (Xu et al., 2004), uses a reticle conflict graph Gr  to describe the dicing conflicts 
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among all the chips in a reticle. Figure 6 shows a Gr for the reticle floorplan on the left of 
Figure 3. This graph is created as follows. A chip in a reticle floorplan is modeled as a  
vertex. A conflict edge between any two chips (vertices) is created if they can not be both 
good bare dice at the same time. Thus, dicing out the chips in a reticle is equivalent to 
coloring a conflict graph. The chips with the same color can be good bare dice at the same 
time and are said to form a color set. Each color set can serve as a reticle dicing plan that 
consists of the dicing lines used to obtain all the chips in the color set. We call this sort of 
wafer sawing coloring dicing. Given that a reticle conflict graph is c-colorable, i.e., having c 
color sets, the number of wafers required for the chips in color set Sj is then 
 

 
Fig. 5. Yet another reticle floorplan along with a wafer dicing plan 
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where u is the number of fields printed on a wafer. The number of wafers required for all of 
the chips is 
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For example, we can use color set {4, 5, 6, 7} to obtain 40 good dice from a wafer for chips 4, 
5, 6, and 7. Similarly, we can use color set {1, 2, 10} to obtain good dice for chips 1, 2, and 10 
and color set {3, 8, 9} to obtain good dice for chips 3, 8, and 9. We need three wafers to attain 
the required production volume of 40 dice for each project (chip) and six wafers for a 
required volume ranging from 41 to 80 dice. If wafer dicing is performed in this way, the 
number of wafers required is at least equal to c regardless of the required production 
volumes. In general, a minimum color solution does not mean a minimum number of wafers 
fabricated if the projects do not have the same required production volumes. Wu and Lin 
(2007) suggest that this sort of SWDP should take into account the production volumes and 
also allow a chip to be in more than one color set. We can easily prove that the SWDP 
formulated in this way is an NP-hard problem. Although we can also use SA to solve this 
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problem, it can be solved more effectively using mathematical programming approaches. 
One can refer to the work (Wu & Lin, 2007) for the details. Especially, the integer linear 
programming models presented in (Wu & Lin, 2007) are very effective for solving an SWDP 
with large production volumes. We will not discuss this sort of methods any further. 

3
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10

2
6

9

8

7

1
 

Fig. 6. A reticle conflict graph 

The second kind of simulated wafer dicing (Kahng et al., 2004) attempts to saw out some 
good dice from a wafer for all the chips participating in a shuttle run.  Suppose the number 
of good dice produced from sawing a wafer is 0pB > for each chip p, the dicing yield of a 
wafer is  

 1
1..

min p

p N p

B
z

V=
= . (3) 

Then, the number of required wafers is  

 11Q z= ⎡ ⎤⎢ ⎥ . (4) 

For example, employing such a definition for performing dicing, we could obtain 7, 6, 6, 9, 7, 
6, 6, 6, 6, and 6 good bare dice from a wafer for the chips shown in Figure 7, respectively. 
With a required production volume of 40 dice for each chip, we have dicing yield z1=0.15 
and the number of required wafers Q=7. Such a problem formulation implies that all wafers 
will have the same dicing plan, but the fields on the same wafer may not have the same 
dicing plan. To saw out dice for some chips, this approach may adversely destroy many dice 
for other chips on the same wafer. Since it deals with only a wafer, we call this approach 1-
wafer yield dicing. It can be extended to sawing k wafers at the same time. We call it k-wafer 
yield dicing. For k-wafer yield dicing, we have the following relation: 

 1kz kz≥ . (5) 

Then, the total number of wafers used is 

 1 kQ k z= ⎡ ⎤⎢ ⎥ . (6) 

Based on the concept of wafer yield dicing, Kahng et al. (2004) propose a non-linear 
programming (NLP) model, three ILP models, and one heuristic to maximize wafer dicing 
yield for square wafers. All these methods use two conflict graphs derived from a reticle 
floorplan to find out a wafer dicing plan. A vertical (horizontal) reticle conflict graph Rv (Rh) 
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can be created in a manner similar to a reticle conflict graph, only considering the dicing 
conflicts created by the vertical (horizontal) dicing lines among the chips in a reticle. An 
independent set in a Rv (Rh) defines a set of vertical (horizontal) dicing lines that can be used 
simultaneously to saw out all the chips in the independent set without destroying each 
other. Thus, to saw out as many chips as possible, a maximal independent set should be 
employed.  
 

 
Fig. 7. Wafer dicing yield (good dice in darker color (green)) 
 

 
Fig. 8. A vertical reticle conflict graph 
 

 
Fig. 9. A horizontal reticle conflict graph 

A reticle dicing plan can be obtained by intersecting a maximal independent set in Rv with a 
maximal independent set in Rh. Those chips belonging to the intersection will be good bare 
dice if the reticle dicing plan defined by the chips in the intersection is used. For example, 
given the vertical reticle conflict graph in Figure 8 and horizontal reticle conflict graph in 
Figure 9, the intersection of maximal vertical independent set {2,3,8} with maximal 
horizontal independent set {1,2,5,7,8,10} is {2,8}. Thus, chips 2 and 8 can be good bare dice at 
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the same time. It is worth noting that the intersection {2,8} is not a maximal independent set 
in the reticle conflict graph in Figure 6. Because of this, a simulated wafer dicing method 
using maximal independent sets in Rv and Rh may fail to produce a good wafer dicing plan. 
It is likely that an intersection is empty. For example, the intersection of maximal vertical 
independent set {1,3,9} with maximal horizontal independent set {2,4,5,7,8,10} is empty.  
Apparently, wafer yield dicing is quite different from coloring dicing. Wafer yield dicing 
requires that at least one good bare die be produced from the wafers sawn. This may 
generate a large number of different reticle dicing plans on a wafer. On the contrary, 
coloring dicing normally generate the same reticle dicing plan for all the fields in a wafer 
and produces the dice only for the chips in a color set. The consequence of this difference is 
that wafer yield dicing can result in a smaller number of wafers fabricated for low-volume 
production. For high-volume production, both approaches perform equally well, but wafer-
yield dicing is more time consuming. In this article, we will present a wafer yield dicing 
method based on SA using maximal independent sets derived from vertical and horizontal 
conflict graphs. 

2.3 Related work for RFP 
In the past, many reticle floorplanning methods have been proposed. These methods can 
generally be classified into the following groups. 
• Slicing tree packing 
Chen and Lynn (2003) perform reticle floorplanning using slicing trees (Wong & Liu, 1986) 
for reticle area minimization. Xu et al. (2003) employ slicing trees to perform reticle area 
minimization while taking die-to-die inspection into consideration. Xu et al. (2004; 2005) 
further consider metal density optimization (Tian et al., 2001) to improve wafer 
planarization. These methods consider only reticle area minimization.  
• Shelf-packing 
Kahng et al. (2004) propose a shelf-packing heuristic that places chips in several shelves. A 
so-obtained solution is improved by simulated annealing interlacing with a dicing heuristic 
to maximize dicing yield while minimizing reticle area. Several mathematical programming 
models for determining wafer dicing lines are also presented there. However, this work 
considers only square wafers. 
• Grid floorplan 
Andersson et al. (2003) propose to pack chips into a two-dimensional array of grids, each of 
which holds at most one chip such that chips can be aligned in horizontal and vertical 
directions. Kahng and Reda (2004) propose a branch-and-bound algorithm to find a grid 
floorplan with the largest dicing yield. This work considers only square wafers. Chen and 
Mak (2006) propose a method to solve a reticle floorplanning problem for chips using a 
different number of metal layers. Ching and Young (2006) define a special type of grid, 
called modified alpha-restricted grid, to reduce the size of the solution space for grid 
floorplan. 
• Hierarchal quadrisection floorplanning 
Kahng et al. (2005) further propose a hierarchal quadrisection reticle floorplanning method 
based on simulated annealing which directly minimizes the upper bound on the number of 
required wafers. A shot-map optimization method is exploited to define the fields printed 
on a wafer. We will elaborate on this approach later since one of our reticle floorplanning 
methods is closely related to it. 



 Simulated Annealing 

 

266 

Besides the aforementioned works, Wu and Lin (2005) propose a non-linear programming 
model for solving a reticle floorplanning problem with flexible chip dimensions. Wu et al. 
(2006) also propose a method based on B*-tree (Chang et al., 2000) for solving multiple 
reticles floorplanning problem. 

3. Simulated wafer dicing by simulated annealing 
Our simulated annealing implementation for SWDP has its root from an efficient heuristic 
called Iterative Augment and Search Algorithm (IASA) presented by Kahng et al. (2004). 
IASA first assigns a vertical (horizontal) reticle dicing plan for each of the first cv columns of 
fields (the first  ch rows of fields), where cv (ch ) is the minimum number of colors used to 
color a vertical (horizontal) reticle conflict graph. These vertical (horizontal) reticle dicing 
plans are derived from a minimum coloring of a vertical (horizontal) reticle conflict graph. 
Vertical (horizontal) dicing plans, i.e., maximal vertical (horizontal) independent sets that 
maximize wafer dicing yield are then one-by-one respectively assigned to the remaining 
columns (rows) until all the columns (rows) have their own dicing plans. Before assigning a 
vertical (horizontal) dicing plan to one of the remaining columns (rows), the dicing plans of 
the already assigned columns (rows) each are replaced by a dicing plan that can attain the 
largest yield. This step is repeated until dicing yield can not be further improved. IASA can 
find a wafer dicing plan very fast, but it tends to be greedy. In the next subsection, we will 
elaborate on our SA method for solving this problem. 

3.1 Simulated annealing implementation 
Here, we will introduce a k-wafer yield dicing method based on SA. This method is called 
HVMIS-SA-Z. Our method has its root from IASA. It also employs maximal vertical  and 
horizontal independent sets. A typical SA is responsible for choosing a viable k-wafer dicing 
plan. Figure 10 gives the pseudo code for HVMIS-SA-Z. The objective function directly 
maximizes k-wafer dicing yield zk. Our neighbourhood function generates a new solution by 
randomly replacing the dicing plan of a column (row) with a new dicing plan selected from 
the set of maximal vertical (horizontal) independent sets. The column (row) being replaced 
with a new dicing plan could be any column (row) on any of the k wafers. It takes some trick 
to update k-wafer dicing yield for a new solution. We need only to recalculate the number of 
good bare dice produced from the column (row) selected for being replaced with a new 
dicing plan. Solution encoding for SWDP is trivial, i.e., a column (row) is simply assigned a 
maximal vertical (horizontal) independent set. This solution encoding can represent each of 
the solutions in the solution space of the k-wafer yield dicing problem. The neighborhood 
function also makes our SA with a non-zero probability of reaching every solution in the 
solution space. SA terminates if no better dicing plan is found for a number of consecutive 
inner while loops. 
The reason for exploring k-wafer yield dicing is that 11/ z⎡ ⎤⎢ ⎥  can be a very poor estimator 

(upper bound) for the number of required wafers as it can be observed from the work done 
by Wu & Lin (2007). We have two ways of performing k-wafer yield dicing. First, we can use 
HVMIS-SA-Z to find a smallest k so that 1kz ≥ . The problem is that we would need to 
repeat running HVMIS-SA-Z for all possible k’s values. This is very time consuming if the 
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required production volumes are large. Second, we use HVMIS-SA-Z to compute / kk z⎡ ⎤⎢ ⎥  

for k from one up to a certain value (10, for example). We then select a k’s value that has the 
smallest / ky k z= ⎡ ⎤⎢ ⎥ . We repeatedly run HVMIS-SA-Z to obtain zy and a new y with 

/ ky k z= ⎡ ⎤⎢ ⎥  until a smallest y that makes 1yz ≥ can be attained. In this manner, HVMIS-SA-Z 

can find a better solution more efficiently for a problem with large production volumes. The 
reason why this works effectively is because / kk z⎡ ⎤⎢ ⎥  rather than 1/ kz⎡ ⎤⎢ ⎥ is a good bound on 

the number of wafers used. The data in the column denoted by HVMIS-SA-Z in Table 2 are 
obtained using such an approach.  
 

 
Fig. 10. Simulated annealing implementation for SWDP 

void HVMIS-SA-Z(k, FR, PV) { 
//FR: a given reticle floorplan for a shuttle run. 
//PV: required production volumes for all the chips in a shuttle run 
//k: number of wafers sawn simultaneously 
double zk, zkn, best_zk; // k-wafer dicing yield 
set MHIS, MVIS; // sets of maximal horizontal and vertical independent set, respectively  
k_wafer_dicing_plan best_dp, current_dp, next_dp; 
double T; // temperature 
double alpha=0.95; 
int frozen( ), equilibrium( ); 
 
MHIS=find_maximal_horizontal_indepedent_set(FR); 
MVIS=find_maximal_vertical_indepedent_set(FR); 
current_dp=find_initial_dicing_plan(k, MHIS, MVIS);  
zk=calculate_k_wafer_dicing_yield(current_dp, PV); 
best_dp=current_dp; 
T=determine_initial_temperature(k,MHIS, MVIS); 
while(not frozen( )){ 
      while(not equilibrium( )){ 
 next_dp=generate_next_wafer_dicing_plan(current_dp, MHIS, MVIS); 
 zkn= calculate_k_wafer_dicing_yield(next_dp, PV); 
 if(zkn>zk){ 
    current_dp=next_dp; 
    zk=zkn; 
    if(zkn>best_zk){ 
     best_zk=zkn; 
     best_dp=next_dp;}} 

 else if( ( )
zkn zk

Trandom e
−

< ){ 
         current_dp=next_dp; 
          zk=zkn; } 
      } 
      T=alpha*T; 
} 
return(best_dp, best_zk); 
} 
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3.2 Experimental results for simulated wafer dicing 
Here, we perform some experiments with two wafer dicing approaches: IASA and HVMIS-
SA-Z. We first investigate which dicing method could attain the largest 1-wafer dicing yield. 
We then make a comparison between IASA (Kahng et al., 2004) and k-wafer yield dicing. All 
experiments are executed on a 2.8 GHz Pentium 4 CPU with 512Mb memory. We use MILP-
VOCO proposed in Wu et al. (2008) to obtain the reticle floorplans for all the test cases. Our 
study is made on 200mm (8 inches) and 300mm (12 inches) wafers. 
In the first experiment, we use the three floorplans shown in Figure 11. Floorplan (b) taken 
from Kahng et al. (2004) is 3-colorable. Floorplan (a) is a quick re-floorplanning of (b). It is 
also 3-colorable. Floorplan (c) is also a re-floorplanning of (b) and is 2-colorable. These 
floorplans are obtained based on satisfying the same production volume of the chips. Table 
1 gives a comparison of the two dicing methods for 1-wafer yield dicing. The time taken for 
IASA is within a second. The time taken for HVMIS-SA-Z is within five minutes. Overall, 
HVMIS-SA-Z is better. The difference in dicing yield obtained by these two methods for a 
test case can be up to 20%. Note that the volume requirement R2 is specially designed such 
that the two conflicting chips 3 and 10 have larger production volumes. R3 is randomly 
made to simulate the production volume requirements prescribed independently by 
different customers. Inspecting the data in Table 1 further, we notice that floorplan (c) does 
better than (b) for required volume set R1. Floorplan (c) is as good as floorplan (b) for 
required volume set R2. However, floorplan (b) does better than floorplan (c) for the 
required volume set R3 despite the fact that floorplan (c) is 2-colorable and floorplan (b) is 3-
colorable. This indicates that not only the number of colors of a reticle conflict graph (i.e., 
reticle floorplan) but also the required production volumes determine the number of wafers 
used. Therefore, a reticle floorplan should be made in accordance with the required 
production volumes. This observation helps us develop a good reticle floorplanning 
method. 
 

  
(a) (W, H)=(18, 18) 

8, 15MHIS MVIS= =  
(b) (W, H)=(12, 24) 

4, 4MHIS MVIS= =  
(c) (W, H)=(12, 24) 

2, 4MHIS MVIS= =  
 

Fig. 11. Different floorplans of the same test case (W: reticle width; H: reticle height) 
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200mm wafer 300mm wafer 
Required 
volumes Floorplan

IASA (Kahng et
al., 2004) HVMIS-SA-Z IASA (Kahng et

al., 2004)  HVMIS-SA-Z 

(a) 0.35 0.38 0.80  0.93 
(b) 0.63 0.68 1.43  1.55 

R1=(40,40,40
,40,40,40,40,

40,40,40) (c) 0.70 0.78 1.65  1.75 
(a) 0.19 0.23 0.52  0.60 
(b) 0.35 0.42 0.86  0.93 

R2=(40,40,80
,40,40,40,40,
40,40,120) (c) 0.38 0.40 0.79  0.91 

(a) 0.13 0.15 0.31  0.36 
(b) 0.20 0.23 0.48  0.51 

R3=(170,60,3
0,60,100,70,1
10,140,100,2

10) (c) 0.17 0.20 0.44  0.45 

Table 1. 1-wafer dicing yield for the three floorplans given in Figure 11 
 

 
I4: (W, H)= (13.1,13.1) 

Required volumes: 
60, 60, 200, 200, 400, 400, 600, 

600 

I5: (W, H)= (10,10) 
Required volumes: 

100, 200, 300, 200, 200, 200, 
200, 200, 80, 60 

I6: (W, H)= (18,19.9) 
Required volumes: 

60, 100, 120, 120, 160, 160, 
200, 200, 200, 200, 200, 200, 

200 

Fig. 12. Floorplans for the three industry test cases 
Table 2 shows the number of wafers used (columns denoted by #wf) and the times taken by 
wafer yield dicing methods for the three industrial test cases shown in Figure 12 and the test 
case in Figure 11(c) with the required volume set R1. The three industrial test cases are 
obtained from Global UniChip. To see how these methods scale with the production 
volumes, we scale the required volumes by a factor of 5, 10, 100, and 1000. HVMIS-SA-Z 
attains better results for larger production volumes. Compared to IASA (Kahng et al., 2004), 
HVMIS-SA-Z could achieve up to 50% wafer reduction for some cases. It achieves on 
average 18% and 37% fewer wafers for low and high volume productions, respectively. The 
data for IASA are obtained using 1-wafer yield dicing. The time spent for obtaining each 
datum for IASA is that for finding out 1-wafer dicing yield z1 defined in (3). 
Figure 13 shows a wafer dicing plan for one of the two wafers obtained by HVMIS-SA-Z for 
I4. As one can see, several different reticle dicing plans have been created to generate some 
dice for each of the chips in the reticle. 
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IASA (Kahng et al., 2004) HVMIS-SA-Z  Floorplan Required 
volumes #wf t(sec.) #wf t(sec.)  

1X 1 0 1 8  
5X 4 0 2 19  

10X 7 0 4 44  
100X 61 0 39 121  

Figure 11(c) 
with required 
volume set R1

1000X 607 0 385 500  
1X 2 0 2 20  
5X 8 0 8 67  

10X 16 0 16 89  
100X 160 0 160 161  

 
 

I4 

1000X 1596 0 1596 1101  
1X 2 1 2 41  
5X 10 1 6 122  

10X 19 1 11 216  
100X 189 1 110 1398  

 
 

I5 

1000X 1887 1 1095 1301  
1X 6 0 4 62  
5X 28 0 16 105  

10X 
100X 

56 
556 

0 
0 

31 
297 

148 
1028 

 
 

 
 

I6 

1000X 5556 0 2959 1102  
1X 0%  18%   
5X 0%  36%   

10X 0%  37%   
100X 0%  37%   

 
 

Average 
reduction 

1000X 0%  37%   
Table 2. Simulated wafer dicing for various production volumes 

4. Reticle floorplanning by simulated annealing 
In this section we first review two solution encodings used in our SA for RFP. We then 
describe a simple objective function for approximating the most accurate objective function 
used for RFP. One may recall that the most accurate objective function for RFP is the 
number of required wafers, which can only be obtained using a simulated wafer dicing 
method. The simulated wafer dicing method IASA described in Section 3 is originally used 
for such a purpose. Finally, we will describe how SA is implemented to solve RFP. 

4.1 Solution encoding 
We use B*-tree (Chang et al., 2000) as one of our solution encodings. B*-tree was originally 
designed for finding a minimum-area floorplan for an ASIC design. A B*-tree corresponds 
to a reticle floorplan. A node in a B*-tree represents a chip in a reticle. The chip 
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corresponding to the root is placed at the bottom-left corner of a reticle. The chip 
corresponding to the left child j is abutted to the right of the chip corresponding to the 
parent node i with j i ix x w= + . The chip corresponding to the right child is placed 
immediately above the chip corresponding to the parent with the same x coordinate. 
Recursively traversing a whole tree using depth-first search from the root, we can convert a 
tree representation into a reticle floorplan. Once this is done, chips are normally pushed to 
the left and then to the bottom to form a compact floorplan. Figure 14 shows a B*-tree and 
its corresponding floorplan (without doing pushing). B*-tree can not represent non-compact 
floorplans in the solution space defined for RFP. This might have an impact on finding a 
solution that incurs the minimum use of wafers. However, its capability of obtaining a 
compact floorplan is important for mask tooling cost minimization as shown in Figure 1. 
 

 

Fig. 13. A wafer dicing plan obtained by HVMIS-SA-Z for I4 with 1X volume ( good dice in 
darker color (green)) 
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Fig. 14. A B*-tree and its corresponding floorplan 

We also employ a solution encoding called hierarchical quadrisection (Kahng et al., 2005) in 
our work. Hierarchal quadrisection (HQ) recursively divides a reticle into four regions, each 
of which holds at most one chip. It partitions the chips into 2l disjoint subsets, where l is the 
number of levels in a hierarchy. As an example shown in Figure 15, the reticle is divided 
into 16 regions (i.e., l=2), each of which contains at most one chip. The four disjoint subsets 
are {2,3}, {4,8}, {1,6} and {5,7}. The chips in the same subset can be sawn out simultaneously. 
This representation was originally used in Kahng et al. (2005) to facilitate to compute an 
upper on the number of required wafers. This bound is then used as the objective function 
for a reticle floorplanning method based on SA. An SA implementation based on HQ 
outperforms the shelf-packing heuristic (Kahng et al., 2004) and the grid-floorplan-based 
branch-and-bound algorithm (Kahng & Reda, 2004) proposed by the same research group. 
As one can see, HQ can not represent compact floorplans. This is in contrast to B*-tree. 
Compactly packed floorplans obtained from B*-tree will incur a number of dicing conflicts. 
However, this drawback is compensated by having a smaller reticle size so that more fields 
will be printed on a wafer. On the contrary, non-compact floorplans obtained from HQ will 
create fewer conflicts but generally have lager reticle size.  
 

 
Fig. 15. A hierarchical quadrisection floorplanning 

4.2 Objective function 
The objective function for RFP is the number of wafers fabricated if the underlying reticle 
floorplan is employed for a shuttle run. However, the exact number of required wafers can 
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only be obtained using simulated wafer dicing, which is too time consuming for an SA 
implementation. As one may recall, HQ can facilitate to construct a reticle floorplanning 
objective function which calculates an upper bound on the number of required wafers. 
Unfortunately, given a reticle floorplan the so-obtained bound is constantly far from the 
minimum number of required wafers. Other more accurate bounds are presented in Wu et 
al. (2008). However, the solution quality obtained using this sort of objective functions is not 
comparable to that obtained using our objective function. Our objective function is based on 
a simple observation that two chips should be placed at the positions where no dicing 
conflict between them can be created if their required production volumes are large. We call 
these two chips compatible. This concept is called volume-driven compatibility optimization 
or VOCO for short. The objective function based on VOCO is as follows: 

 
1

1 1
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N N

pq p q
p q p

Max F E V V WHδ δ β
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= = +
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= − +∑  is a normalizing factor; H (Hmax) and W (Wmax) are the 

(maximum allowable) reticle height and width, respectively. pV and qV are the required 
production volumes for chips p and q respectively; 1pqE = if chips p and q are compatible, 
otherwise, it is zero. δ  is a weighing factor for compatibility and reticle dimensions. If 0,δ =  
the objective function minimizes only reticle dimensions. If 1δ = , the objective function 
maximizes compatibility for given reticle dimensions. As one can see, reticle area is part of 
the objective function. This objective function can be evaluated easily for a given floorplan. 
We need only to calculate Epq, which is much simpler than doing simulated wafer dicing. 
We hope that this objective function will correspond well to the number of required wafers. 
That is to say, given any two floorplans a and b, we would like to have Qa < Qb if Fa > Fb, 
where Qa  and Qb are the number of wafers required for floorplans a and b and Fa and Fb are 
the objective function’s values for floorplans a and b, respectively. Unfortunately, the 
number of required wafers is related to reticle area and compatibility, which are two 
conflicting goals of optimization. The degree of such a relation varies significantly from one 
problem instance to another so that no single value of δ can render a good correspondence 
between the objective function’s value and the number of required wafers. In this work, a 
number of δ’s  values between zero and one will be tried for obtaining the best solution. 

4.3 Simulated annealing implementation 
Using the aforementioned two solution encodings along with the objective function, we 
devise two simulated annealing implementations for RFP. Figure 16 shows the pseudo code 
of our implementation. If the solution encoding is B*-tree, we call this implementation BT-
VOCO. To generate a new solution for BT-VOCO, we need only to move around a node in 
the tree, exchange two nodes, rotate a node, move a sub-tree to another place, etc. Although 
the neighbourhood function can flexibly derive one B*-tree from another, one should 
remember that only compact floorplans can be obtained. On the other hand, if the solution 
encoding is HQ, we call this implementation HQ-VOCO. To generate a new solution we 
need only to move around a node, exchange two nodes, or rotate a node within the regions 
defined by HQ. SA terminates if no better reticle floorplan is found for a number of 
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consecutive inner while loops. As one can see, we make δ as one of the arguments of 
VOCO_RFP so that a number of δ’s  values between zero and one can be tried.  
 

 
 
 
Fig. 16. Simulated annealing implementation for RFP 

4.4 Experimental results for reticle floorplanning 
In this subsection we perform some experiments to evaluate the proposed floorplanning 
methods. The floorplanning methods investigated include BT, BT-VOCO, HQ-RCV, and 
HQ-VOCO. BT is a special case of BT-VOCO with 0δ = that simply minimizes the reticle 
area (Chang et al., 2000). HQ-RCV is the original method proposed by Kahng et al. (2005) 
where an upper bound on the number of required wafers is used as the reticle floorplanning 
objective function. To determine the number of wafers needed to meet the production 

void VOCO_RFP(SC, PV, δ, H_max, W_max, solution_encoding) { 
//SC: a set of chips participating in a shuttle run 
//PV: required production volumes for all the chips in a shuttle run 
//δ: a weighing factor for objective function 
//H_max (W_max): maximum allowable reticle height (width) 
//solution encoding: B*-tree or HQ 
double c_current, c_next, c_best; // objective function’s values for current, next, best solutions 
floorplan current_fp, next_fp, best_fp; 
double T; // temperature 
double alpha=0.95; 
int frozen( ), equilibrium( ); 
 
current_fp=find_initial_floorplan(SC, H_max, W_max, solution_encoding);  
c_current=eveluate_objective_function(current_fp, PV, δ); 
best_fp=current_fp; 
T=determine_initial_temperature(SC, H_max, W_max, solution_encoding, PV, δ) 
while(not frozen( )){ 
      while(not equilibrium( )){ 
 next_fp=generate_next_floorplan(current_fp, H_max, W_max, solution_encoding); 
 c_next= eveluate_objective_function(next_fp, PV, δ); 
 if(c_next>c_current){ 
    current_fp=next_fp; 
    c_current=c_next; 
    if(c_next>c_best){ 
     c_best=c_next; 
     best_fp=next_fp;}} 

 else if(
_ _

( )
c next c current

Trandom e
−

< ){ 
         current_fp=next_fp; 
         c_current=c_next; } 
      } 
      T=alpha*T; 
} 
return (best_fp); 
} 
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volumes, we employ HVMIS-SA-Z for low-volume dicing and ILP models using the 
maximal independent sets in a reticle conflict graph as done in Kahng et al. (2005) for high-
volume dicing. CPLEX 9.0 from ILOG (Hentnryck, 2000) is used to obtain a best feasible 
solution for the ILP models.  The test cases are given in Table 3. Cases I1~I6 are obtained 
from Global Unichip. The number of chips per test case is from 3 to 40. Since we are 
experimenting with 300mm wafers, the 1X volume requirement is often too small to make a 
difference in the number of wafers used. We scale the volume requirements by a factor of 4 
and 10.  Such scaling can evaluate the viability of the proposed methods for solving the 
problems with higher production volumes. 
 

Case Chip dimensions (w, h) 
(mm) 

Wmax x 
Hmax 

(mm) 
Required volumes 

I1 (9.5, 9.5), (2, 2), (2.5, 2.5) 20x20 60, 200, 200 
I2 (4, 5.5), (4, 3.78), (3, 3), (3, 2.2) 20x20 80, 150, 80, 80 
I3 (7, 2.5), (5, 2), (5, 3), (3, 2), (2, 2) 20x20 120, 120, 120, 120,120 

I4 (4, 3), (6.5, 7), (2, 2.5), (2, 1), (1.5, 2.5), (5, 
3), (2, 1.5), (3, 2.5) 15x15 60, 60, 200, 200, 400, 400, 600, 

600 

I5 
(2.5, 6.25), (1.8, 5.5), (2, 1.25), (2.2, 1.75), 

(1.7,2.25), (1.5, 1.55), (2.3, 3.75), (1, 
3.25),(1.3, 4.25), (2.7, 1.1) 

20x20 100, 200, 300, 200, 200, 200, 
200, 200, 80, 60 

I6 
(6.5, 6.5), (4.5, 5), (5.5, 1.5), (4.5, 3), (6.5, 
3.5), (4.5, 3.5), (6.5, 8), (3.3,3.5), (2.5, 3.5), 

(3.5, 2.5), (7.5, 2.5), (4, 2.5), (2.5, 2.5) 
20x20 60, 100, 120, 120, 160, 160, 200, 

200, 200, 200, 200, 200, 200 

I7 Combining all chips from I1 to I4 20x20 Inherited from original test 
case 

I8 Combining all chips from I2 to I5 20x20 Inherited from original test 
case 

I9 Replicating the chips in I5 4 times 20x20 Randomly generated and 
ranging from 40 to 350 

Ind2 The test case Ind2 from Kahng et al. ( 
2005) 20x20 Randomly generated and 

ranging from 25 to 67 

Table 3. Test cases 

Our experiments were run on a 2.4 GHz AMD K8 CPU with 2GB memory. We performed 5 
BT-VOCO runs and HQ-VOCO runs for each of δ values, 0.1, 0.2, 0.3, …, 0.9, 1.0. There were 
50 BT-VOCO and HQ-VOCO runs for each test case, respectively. For a fair comparison, 
there were also 50 BT runs for each test case. There were 20 HQ-RCV runs for each test case 
using a run time approximately equal to that of 50 BT-VOCO runs. Table 4 gives the 
minimum number of wafers (columns denoted by #wf) and the corresponding reticle size 
(columns denoted by ave area). Since there can be more than one floorplan that achieves the 
minimum wafers, the corresponding reticle size is an average value. A row denoted by 
Norm gives the normalized number of wafers (reticle area) with respect to the number of 
wafers (reticle area) achieved by HQ-RCV (Kahng et al., 2005). Figure 17 presents the spread 
of the number of wafers attained using each method. Clearly, BT which simply minimizes 
reticle area using B*-tree works poorly with respect to the number of wafers used. HQ- 
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BT (Chang et al.,
2000) 

BT- VOCO HQ-RCV 
(Kahng et al. 
2005) 

HQ-VOCO Volume Case 

#wf ave area #wf ave area #wf ave area #wf ave area 
I1 1 114 1 136 1 139 1 138 
I2 1 58 1 67 1 69 1 65 
I3 1 53 1 67 1 124 1 94 
I4 3 95 2 115 2 192 2 135 
I5 2 62 2 106 2 146 2 115 
I6 4 249 3 266 4 303 3 296 
I7 7 305 4 333 6 371 4 352 
I8 7 267 5 337 9 383 5 310 
I9 10 244 7 288 10 352 6 308 
Ind2 2 189 2 242 2 344 2 264 
Total 38 1635 28 1956 38 2423 27 2077 

 
 
1X 

Norm 1 0.67 0.74 0.81 1 1 0.71 0.86 
I1 4 114 3 138 3 138 3 138 
I2 1 58 1 67 1 65 1 65 
I3 1 53 1 66 2 111 1 87 
I4 10 96 5 109 6 132 5 115 
I5 4 61 4 72 4 79.2 3 67 
I6 13 250 9 252 12 284 10 287 
I7 24 305 16 333 23 360 15 340 
I8 28 266 19 345 22 310 17 339 
I9 29 244 21 266 27 354 22 281 
Ind2 4 189 3 220 4 245 3 229 
Total 118 1636 82 1867 104 2079 80 1948 

 
 
4X 

Norm 1.13 0.79 0.79 0.90 1 1 0.77 0.94 
I1 9 114 6 138 6 138 6 138 
I2 3 58 2 65 3 68 3 65 
I3 2 53 2 53 4 98 2 92 
I4 22 95 12 105 14 127 12 110 
I5 9 61 7 65 9 86 8 72 
I6 31 250 22 252 26 271 23 287 
I7 57 305 38 314 53 351 37 340 
I8 64 268 47 333 52 309 43 308 
I9 63 244 50 266 57 298 52 306 
Ind2 9 189 8 214 8 223 7 225 
Total 269 1636 194 1804 232 1969 193 1944 

 
 
10X 

Norm 1.16 0.83 0.84 0.92 1 1 0.83 0.99 

Table 4. Minimum number of wafers and the average reticle area (mm2) 
VOCO (BT-VOCO) is 17%~29% (16%~26%) better than HQ-RCV. HQ-VOCO is about 
1%~3% better than BT-VOCO. As one can see, BT-VOCO and HQ-VOCO were most viable 
approaches for minimizing the number of wafers. It is also interesting to see that the 
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improvement percentage achieved by BT-VOCO and HQ-VOCO decreases as the volume 
requirement increases. The reason is that the objective function used by HQ-RCV is dictated 
by the chromatic number used to color a reticle conflict graph. However, minimum 
chromatic coloring does not necessarily imply a minimum use of wafers for low-volume 
production. This leads to a larger denominator for normalization and thus smaller 
normalized values for BT-VOCO (HQ-VOCO) with low-volume production. As for reticle 
area, BT-VOCO is 8%~19% smaller than HQ-RCV, 4%~7% smaller than HQ-VOCO, but 
9%~14% larger than BT.  

 
(a). 1X volume 

 
(b). 4X volume 

 
(c). 10X volume 

Fig. 17. Spread of the number of wafers 
 

The total run time for obtaining the above results is given in Table 5. Note that HQ-VOCO is 
almost two times faster than BT-VOCO. The run time is specially set to make HQ-RCV and 
BT-VOCO use about the same amount of time. Figure 18 shows the best floorplans obtained 
using each of the methods for I9. 

5. Conclusions and future work 
In this chapter we have demonstrated how simulated annealing is used to solve two NP-
hard problems: simulated wafer dicing and reticle floorplanning problems for MPW. For 
simulated wafer dicing, we suggest that HVMIS-SA-Z be employed to find the wafer dicing 
plans, especially for low-volume production. As for reticle floorplanning, BT-VOCO and 



 Simulated Annealing 

 

278 

HQ-VOCO should be used, depending on production volumes, mask tooling cost (relating 
to reticle area), and wafer fabrication cost (relating to the number of wafers fabricated). 
Because MPW production cost is a sum of mask tooling and wafer fabrication costs, we 
suggest that one should employ BT-VOCO and/or HQ-VOCO to perform a reticle design 
space exploration for obtaining a minimum-cost reticle floorplan, rather than a minimum-
wafer-use reticle floorplan. As part of future work, it is interesting to find a solution 
encoding that can express compact versus non-compact floorplans. 
 

Case BT BT-
VOCO HQ-RCV HQ-VOCO 

I1 4 4 45 3 
I2 5 8 60 3 
I3 7 12 76 6 
I4 21 38 163 19 
I5 28 62 203 26 
I6 49 127 276 54 
I7 112 388 606 274 
I8 201 884 988 535 
I9 484 2615 1837 1326 

Ind2 47 135 240 58 
Total 958 4273 4494 2304 

Table 5. Total run time (sec.) 

 
(a). BT: (W, H)=(13.75, 17.75) 

 
(b). BT-VOCO: (W, H)=(15.9, 16.75) 

 
(c). HQ-RCV: (W, H)=(16.05, 18.55) 

 
(d). HQ-VOCO: (W,H)=(17.4, 17.6) 

Fig. 18. Best reticle floorplans respectively obtained by each of the RFP methods for I9 
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1. Introduction     
The increasing demand from the industry for lightweight, high-performance and low-cost 
structures drives the considerable current research going on in the field of structural 
optimization. In the early stages, structural optimization was restricted to sizing 
optimization. Now, there are broadly three problem areas that the researchers and engineers 
face. One is shape optimization, which involves finding the best profile for a structure under 
various constraints imposed by the requirements of the design. The objective may be to 
minimize weight or maximize mechanical performance. The other is topology optimization, 
which involves finding the best configuration or layout for a structure. The last one is 
composites optimization. Better performance may be obtained by optimizing the material 
system itself such as fibre orientations, filler or fibre volume fraction, ply thickness, stacking 
sequence.  
Locating globally optimum structural designs is a difficult problem, requiring sophisticated 
optimization procedures. In typical structural optimization problems, there may be many 
locally optimal configurations. For that reason, a downhill-proceeding algorithm, in which a 
monotonically decreasing value of objective function is iteratively created, may get stuck 
into a locally optimal point other than the globally optimal solution. Therefore, researchers 
adopted global search algorithms like simulated annealing in their studies of structural 
optimization. 
This chapter gives a review of the current research on these fields. The objective functions, 
constraints, design variables and search algorithms adopted in these studies will be 
discussed. Then, this chapter will focus on the applications of simulated annealing to 
structural optimization. 

2. Shape optimization 
In shape optimization, contours of a structure are modified to achieve savings in weight and 
improvements in structural performance. Fig. 1 depicts a typical shape optimization 
problem. This is an eccentrically loaded plate restrained at one end and loaded at the other. 
The shape of the boundary excluding the portion on which boundary conditions are applied 
is optimized for minimum weight. 
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Fig. 1. An illustration of a shape optimization problem. 

Applications in this field include optimum shape designs of 2D structures like eccentrically 
loaded plates as depicted in Fig. 1, fillets, cams, torque arms, pin joints, brackets, (see Fig. 2. 
a, b, c, d, e), hooks, holes in plates, rings, chain links, plates containing cracks, saw blades etc, 
beams, tubes, shell structures, components in contact, thermal fins, axisymmetric structures, 
3D structures like engine bearing cap, turbine blades (see Fig. 2. f), engine mount bracket, 
(see Fig. 2. g) and slider bearings (see Fig. 2. h).  
In any optimization process, there should be an objective function according to which 
effectiveness of a design can be evaluated. In shape optimization, either the most efficient 
use of material or the best performance is sought. The goal may be to minimize weight of a 
structure or to increase mechanical performance, e.g. to minimize stress concentration, peak 
contact stress, compliance etc.; or maximize static strength, fracture strength, buckling 
strength, fatigue life etc. 
In order for a designer to optimize a structure, he/she should be allowed to change some of 
its properties affecting the objective function. As for a shape optimization problem, some 
parts of the boundary should be allowed to vary. Boundaries of structures may be defined 
using spline curves passing through a number of key points. Coordinates of these points 
thus become design variables. By changing the positions of the key points during an 
optimization process, a new shape can be obtained (Fig. 3). The advantage of using spline 
curves is that the shape of a structure can be defined using just a few design variables and a 
smooth boundary is obtained. Some parameterized equations can also be used for boundary 
curve; the parameters then control the size, shape, and aspect ratio of the boundary. 
Alternatively, simply dimensions of individual parts of the structures, radius of a hole, 
length of an edge etc., can be taken as design variables; but the number of configurations 
that can be generated may be too limited for efficient optimization. Also, by removing or 
restoring  materials within  the  elements  of  a finite element model,  the shape of a structure 
may be changed. In that case, presence of material becomes a design variable. In this 
approach, a structural model is first divided into small finite element blocks and then these 
blocks are removed or restored to obtain a new shape (Fig. 4). One difficulty with this 
method is that removing and restoring an element may violate model connectivity. 

F

F 

Initial shape Optimal shape
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Whenever a new configuration is generated its connectivity should be checked. Another 
difficulty is the roughness of the resulting boundaries. If smooth boundaries are desired, 
small elements should be used, which may result in long computational times. 
 

 
 

Fig. 2. Shape optimization problems: (a) fillet, (b) cam (Lampinen, 2003), (c) torque arm, (d) 
pin joint, (e) bracket (Kim et al., 2003), ( f ) turbine blades (Jung et al.,2005), (g) engine mount 
bracket (Shen & Yoon, 2003), (h) slider bearing (Chang & Cheng, 2005). 

(a) Fillet

(b) Cam
(c) Torque arm

Fixed 
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(d) Pin joint

(e) Bracket
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Fig. 3. Modifying the shape of the boundary defined by spline curves by changing the 
position of a key point. 
 

 
Fig. 4. Obtaining a new shape by removing or restoring material in a grid. 

During a shape optimization process, geometry of the structure may undergo substantial 
changes, such that it can no longer be considered as a viable structure, e.g. geometric model 
may become infeasible, e.g. some parts of the structure may lose their connection to the 
supports, this means that the structure may no longer remain in one piece, stresses may 
exceed the allowable stress, fatigue life may become shorter than the desired life, natural 
frequency may be lower than a certain limit, displacements may be too large, finite element 
mesh may become too distorted, the area or volume may become too large, manufacturing 
may become too difficult etc. In these cases, behavioural constraints should be imposed. 

2.1 Precision of an optimum design  
One of the requirements for a search of the best possible design is the precise definition of 
the optimized system. How well the optimized system is defined by the design variables is a 
measure of precision. Some of the parameters that define the system are allowed to be 
changed during an optimization process. The number of these parameters and the range of 
values that they may take determine the degree at which the system can be tailored to the 
best performance. By increasing the number of design variables and range of their values, 
one may obtain a better definition and also a better optimum design. If the system is 
complex, complete definition of it may require large numbers of design variables. If all of 
them are used as optimization variables, that means if the optimized system is precisely 
defined, long computational times are needed, and also likelihood of locating the globally 
optimum design may become very low. If the definition of the system is based on a limited 
number of design variables, that means if the definition allows for only a limited number of 

Key point 
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distinct configurations, the resulting optimum configuration can not reflect the best possible 
design. Although using the most precise definition of the system during optimization is 
desirable, this is usually not practicable; but if a less precise definition is used, one should be 
aware of its impact on how well the final design represents the best possible design.  
In a shape optimization problem, by using a larger number of variables one may better 
describe the boundary and obtain a better optimum design. Consider the weight 
minimization problem depicted in Fig. 1. This problem was solved by Sonmez (2007) first by 
using five moving key points to describe the boundary, then seven and nine key points. Fig. 
5 shows the optimal shapes with their finite element meshes. The lateral areas of the 
optimum shapes defined by five, seven, and nine key points were found to be 37.100, 36.313, 
and 35.903 cm2, respectively. Consequently, with a larger number of key points, one can 
obtain a better definition of shape and also find an optimum configuration with a lower 
cost. 
 

 
Fig. 5. Optimal shapes for an eccentrically loaded plate using (a) five, (b) seven, (c) nine key 
points (Sonmez, 2007).  

2.2 Accuracy of an optimum design  
Another concern in shape optimization is the accuracy, i.e. how well the resulting optimum 
shape reflects the best possible shape. As one of the sources detracting from the accuracy, 
search algorithm may get stuck into one of the local optimums that fail to approximate the 
global optimum. One may not ensure that the resulting configuration is globally optimal; 
but one may use reliable search algorithms such as simulated annealing. Another source of 
low accuracy is due to errors in calculating the cost of a configuration. In many structural 
optimization problems, maximum stress value is used either in calculating the cost function 
or in checking constraint violations. Designers usually carry out a finite element (FE) 
analysis to calculate the stress state in the structure, but they tend to choose a rough FE 
mesh to alleviate the computational burden. However, this may lead to erroneous values of 
stress, and the resulting design may not even be similar to the globally optimum design. The 
significance of accuracy in FE calculations is better seen in Fig. 6, which shows the optimum 
shape obtained when a rough mesh is used. Although the error in stress level is only 5%, the 
discrepancy in shape is quite large. Imprecise definition of shape also leads to optimal 
shapes not similar to the best possible shape as shown in Fig. 5. 

(a) (b) (c) 
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Fig. 6. Inaccurate optimal shape obtained with a rough mesh (Sonmez, 2007).  

2.3 Application of simulated annealing to shape optimization 
In shape optimization problems, typically there exist quite a number of locally optimum 
designs, which may be far worse than the globally optimum design according to the chosen 
criterion of effectiveness. For that reason, a downhill proceeding algorithm, in which a 
monotonically decreasing value of objective function is iteratively created, may get stuck 
into a locally minimum point other than the globally minimum one. Its success depends on 
the choice of initial design, i.e. on designer’s intuition; therefore it may not reflect the best 
possible design. An optimization procedure based on a local-search algorithm can only be 
successful if the objective is to improve the current design or only a small segment of the 
boundary is allowed to move, or only a small number of dimensional parameters are used 
to define its shape. Another disadvantage is that if the starting point is outside the feasible 
region, the algorithm may converge to a local minimum within the infeasible domain. The 
advantage of using local search algorithms, on the other hand, is their computational 
efficiency. Just a small number of iterations are needed to obtain an improved design. 
One of the optimization methods that have been used to obtain optimal structural designs is 
evolutionary structural optimization. The approach is to gradually remove inefficient 
materials until the shape of the structure evolves into an optimum. Although this method is 
not a global search algorithm, because of its simplicity and effectiveness, it has been applied 
to many structural optimization problems (Qing et al., 2001; Das et al., 2005; Cervera & 
Trevelyan, 2005; Li et al., 2005). This method is also suitable for topology optimization, 
where not only outer boundary but also geometry of inner regions is allowed to change. 
There are also similar algorithms which can effectively be used to find improved designs 
such as biological growth methods (Tekkaya & Guneri, 1996; Wessel et al., 2004) and 
metamorphic development methods (Liu, et al., 2005). 
In order to find the absolute minimum of an objective function without being sensitive to 
the starting position, a global optimization method has to be employed in structural 
optimization problems. Stochastic optimization techniques are quite suitable in this respect. 
Among their advantages, they are not sensitive to starting point, they can search a large 
solution space, and they can escape local optimum points because they allow occasional 
uphill moves. The genetic algorithm (GA) and simulated annealing (SA) algorithm are two 
of the most popular stochastic optimization techniques.  
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Many researchers applied genetic algorithms to shape optimization problems (Sandgren & 
Jensen, 1992; Kita & Tanie, 1997; Annicchiarico & Cerrolaza, 2001; Woon et al., 2003; Garcia 
& Gonzales, 2004; Zhang et al., 2005). These algorithms are based on the concepts of genetics 
and Darwinian survival of the fittest. The idea is to start the search process with a set of 
designs, called population. The search procedure is a simulation of the evolution process. 
The genetic algorithm transforms one population into a succeeding population using 
operators of reproduction, recombination, and mutation. Convergence to the global 
minimum depends on the proper choice of the design parameters, rules of the reproduction 
and mutation.  
Kirkpatrick et al. (1983) first proposed simulated annealing (SA) as a powerful stochastic 
search technique. SA is superior to other optimization algorithms in that it is generally more 
reliable in finding the global optimum, i.e. the probability of locating the global optimum is 
high even with large numbers of design variables. Another advantage of SA is that it does 
not require derivatives of objective function or constraint functions, being a zero order 
algorithm like GA. The main drawback, on the other hand, is the requirement of quite a 
number of iterations for convergence; but with the today’s ever increasing computational 
power, this is becoming less and less problem.  
Application of simulated annealing to shape optimization of the structures is quite rare. 
Anagnostou et al. (1992) used SA to design a thermal fin with a minimum use of material. 
Sonmez (2007) used SA to obtain optimal designs for two-dimensional structures with 
minimum weight. Sonmez (2007) employed an improved variant of SA called direct search 
simulated annealing (DSA), proposed by Ali et al. (2002). DSA differs from SA basically in 
two aspects. Firstly, DSA keeps a set of current configurations rather than just one current 
configuration. Secondly, it always retains the best configuration. In a way, this property 
imparts a sort of memory to the optimization process. If a newly generated configuration is 
accepted, it just replaces the worst configuration. 
Shape optimization is a constrained optimization; but SA is only applicable to 
unconstrained optimization problems. By integrating a penalty function for constraint 
violations into the objective function, the constrained optimization problem can be 
transformed into an unconstrained problem, for which the algorithm is suitable. Consider 
the volume minimization problem for a 2D structure having constant thickness. A combined 
objective function may be constructed as 
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where Aini is the lateral area of the initial configuration; c is a weighing coefficient. Any 
excursion into the infeasible region ( allowσ>σmax ) results in an increase in the objective 
function. 
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2.3.1 Optimal shape design of a Pin-Joint 
Consider a pin-joint depicted in Fig. 2.d. The problem is to find the minimum-weight pin-
joint that will not fail under static loading. The magnitude of the load is taken to be 200 MPa 
at the centre of the contact zone decreasing to zero towards the end. Radius of the circular 
holes is 1 cm, and the distance between their centres is 13 cm. During the optimization 
process, the entire outer boundary is allowed to vary. Because of symmetry, only one 
quarter of the component is considered for analysis as shown in Fig. 7. The slope of the 
spline curve is set to 90º at the top, 0º at the bottom in order to ensure symmetry. The key 
points at these locations are movable; but one is restricted to move in the horizontal 
direction, the other in the vertical direction. The allowable stress of the material is taken as 
300 MPa. 
 

 
Fig. 7. Domain of analysis for the pin-joint and the boundary conditions (Sonmez, 2007).  

Fig. 8 shows the optimal shapes obtained using four, six, eight, and ten moving key points. 
The lateral areas of them were 13.757, 12.603, 11.948, and 11.895 cm2, respectively. This 
means that with a more precise definition of the boundary, a better optimal shape is 
obtained. The resulting optimum shape is somewhat surprising. This does not look like any 
of the commonly used pin-joints. A curved indent appears at the side of the hole. This 
shows that the optimal shapes obtained through an optimization algorithm may not 
conform to the intuition of the designer. One may conjecture that the curved indent tends to 
reduce the stress concentration effect of the curvature of the hole.  
In the physical annealing process, mobility of atoms is high at high temperatures, which 
decreases as the temperature is lowered. In order to search the global optimum within a 
large domain, this aspect of the physical annealing process should be incorporated to the 
simulated annealing optimization procedure. This is achieved for the problem discussed 
above, by allowing large changes in the positions of the key points during the initial phases 
of optimization, where the temperature parameter is high, and gradually restricting their 
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movements in later stages. In this way, not only near neighbourhood of the initially chosen 
design is searched, but also quite different designs are tried. 
 

 
 

Fig. 8. The optimal shapes found using four, six, eight, and ten key points (Sonmez, 2007).  

2.3.2 Optimal shape design of a torque arm 
Another problem is the optimal design of a torque arm as depicted in Fig. 9. The radii of the 
circular holes on the left and the right are 6 mm and 3 mm, respectively. The border of the 
circular hole on the left is restrained from movement, while the other is loaded as shown. 
The entire boundary is allowed to move during optimization except that the holes are fixed. 
Because the structure is symmetric with respect to the axis passing through the centres of 
the holes, only the coordinates of the key points on one of its sides are design variables, and 
the two key points on it are constrained to move along this axis. As shown in the figure, the 
search domain, S, within which the key points can only move, is defined by a rectangle of 
dimension 75 mm × 22 mm. The allowable stress of the material is taken as 600 MPa. Figure 
10 shows the optimal shape obtained using 10 moving key points, which has a lateral area of 
7.1753 cm2. A hump appears close to the larger hole.  

2.3.3 Feasibility of global search using a local search algorithm 
Computational burden of global search algorithms is known to be considerable, while local 
search algorithms converge at most in a few hundred iterations. One may wonder whether 
local search algorithms are better alternatives to global search, which may be achieved by 
repeated runs each time starting from a different initial configuration.  
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Fig. 9. Optimum design problem for a torque arm (Sonmez, 2007).  
 

 
Fig. 10. The optimal shape found using 10 key points. (Sonmez, 2007) 

Although first or second order algorithms are more efficient, they are not suitable for global 
search in shape optimization. Because, it is very likely that connectivity of the structure is 
lost during iterations. In that case, the objective function cannot be calculated since a finite 
element analysis of an unrestrained structure cannot be carried out; only a large penalty 
value can be assigned. Accordingly, derivative of the objective function cannot be 
calculated. For this reason, first and second order local search algorithms may only be 
employed to improve a current design since connectivity is not expected to be lost if the 
search is restricted to near neighbourhood of the initial design. Therefore, we are left with 
zero order methods, which only require calculation of objective function values 
corresponding to a given set of optimization variables not their derivatives. Among them, 
Nelder-Mead method was chosen and employed repeatedly starting from arbitrarily 
generated initial shapes. Figure 11 shows the lateral areas of the generated optimum shapes. 
Every one of them had a larger area than the one obtained by the global search algorithm. 
The optimization process was repeated 350 times, which required more than 200 thousand 
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FE analyses of the structure. Therefore, global search through a local search algorithm is also 
not computationally efficient; the reason for this is obvious if one examines the shape in 
Figure 12, which suggests that there are infinitely different ways a local optimum shape can 
show itself. Figure 13 shows the best shape found by Nelder-Mead algorithm. This has a 
lateral  area of  7.5040 cm2,  which is about 4% larger than  the best area found by  the global 
search algorithm, DSA. This implies that starting with arbitrary shapes it is very unlikely for 
a local search algorithm to locate the globally optimum shape. Also, precision and accuracy 
cannot be checked. Accordingly, we may conclude that local search algorithms are not 
suitable for global search in shape optimization problems.  
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Fig. 11. Lateral areas of the optimum shapes generated through repeated runs using Nelder-
Mead algorithm each starting with randomly generated initial shapes (Sonmez, 2007).  

 

 
Fig. 12. A typical shape found by a local search algorithm (Nelder-Mead), which is trapped 
into a local minimum with a high objective function value (Sonmez, 2007).  
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Fig. 13. The best shape found by a local search algorithm (Nelder-Mead) (Sonmez, 2007).  

2.3.4 Optimal shape design of a shoulder fillet 
Consider an optimal shape design problem of minimizing stress concentration in a 
shouldered shaft subject to axial loading as depicted in Fig. 14. The geometric features 
having determining effect on stress concentration factor are the ratios of dD  and ( )dD −  
and most importantly the shape of the fillet. ℓ is the length of the transition region. The 
objective is to minimize the peak equivalent stress induced in the structure. The objective 
function can then be expressed in the following form: 

( )
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q
f

σ

σ
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where ( )
maxqσ  is the maximum equivalent stress developed in the structure, σallow is the 

allowable stress. 
 

 

Fig. 14. Representation of a fillet shape optimization problem for a shouldered plate 
(Sonmez, 2008).  

The optimization variables are the x and y coordinates of the moving key points. There are 
some restrictions on the movements of the key points, i.e. constraints on optimization 
variables. First of all, the key points are allowed to move only within a search region, S, 
defined by the designer. Although search of a globally optimum design without restricting 
the movements of the key points is possible, computational time becomes unnecessarily 
much longer. Search domain should not be too restrictive, but should exclude the regions 
that are definitely expected to be away from the optimal boundary.  
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The main drawback of SA algorithm is its high computational burden. Use of this algorithm 
can only be feasible for shape design optimization applications, if some ways of increasing 
its efficiency can be found without compromising from its reliability in locating globally 
optimal designs. This example shows one of the computationally efficient ways of finding 
the best possible design. This is achieved through successively obtaining more and more 
precise optimal shapes and a judicious way of determining the bounds of the search 
domain.  
If optimal shapes are obtained using a low number of moving key points, definition of the 
boundary will be imprecise, but the globally optimal shape can reliably be obtained to a 
high degree of accuracy. However, imprecisely defined optimal shape even if it is globally 
optimum for the chosen design variables may not represent the best possible shape. When 
the number of the key points is increased, the boundary can be defined more precisely, but 
whether the globally optimal design has been accurately obtained or not becomes 
questionable. This is because the likelihood of getting stuck into a local optimum will be 
high with a large number of optimization variables even if a global search algorithm is used. 
However, if some regions of the search domain that are expected to be away from the 
globally optimal point are excluded, reliability of the search algorithm can be increased. 
Restricting the search domain for a more precisely defined shape design problem by 
considering the optimal shape obtained using a lower number of key points, one may obtain 
a higher reliability. By successively generating more and more precise optimal shapes and 
each time restricting the search domain, one may locate the best possible shape as shown in 
the following shape design problem. 
For the shape design optimization problem of a shouldered shaft, first, the fillet was defined 
by two moving key points and its shape was optimized using DSA algorithm. Fig. 15 shows 
the optimal shape of the fillet and the stress distribution within the plate. The maximum 
equivalent stress is 346.25 MPa. “B” indicates the position of the fixed key point at the right 
end of the transition region shown in Fig. 14, while “1” and “2” point to the optimal 
positions of the moving key points. 
 

 
Fig. 15. Stress distribution within the optimal shaped plate with a shoulder fillet defined by 
two key points (Sonmez, 2008).  

The optimal shape obtained by two moving key points implies that the search region shown 
in Fig. 14 is unnecessarily large. Movements of the key points towards the region around the 
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upper right corner certainly result in worse designs. Inclusion of this region within the 
search domain leads to generation of many unnecessary configurations, and thus high 
computational cost. For this reason, the search domain shown in Fig. 16 was adopted in 
optimizing the fillet defined by three key points. However, the optimum fillet shape 
obtained with two key points was not used as an initial configuration in the new 
optimization process. Again, initial coordinates of the moving key points were randomly 
generated within the search domain. The resulting optimal shaped plate and the stress state 
are shown in Fig. 17. The maximum equivalent stress turned out to be 344.68 MPa. Because 
three key points provided a more precise definition of shape, allowing generation of shapes 
not possible for two key points, a better shape with a lower stress concentration was 
obtained. 
 

 
Fig. 16. Search domain used for three moving key points (Sonmez, 2008).  
 

 
Fig. 17. Stress distribution within the optimal shaped plate with a shoulder fillet defined by 
three key points (Sonmez, 2008).  

Next, the fillet shape defined by four key points was optimized. This time, a separate search 
domain was used for each key point  (Fig. 18).  This eliminates  generation  of  very irregular 
shapes, but allows generation of every possible near optimum shape. Fig. 19 shows the 
optimal shape and the stress state in the plate. The maximum stress is 343.87 MPa. Unlike 
the previous shapes, a protrusion develops at the upper portion of the fillet. Because the 



Structural Optimization Using Simulated Annealing 

 

295 

15 mm

Search 
domains  

A

B

10 mm

algorithm tries to minimize the maximum stress and this is a lower stressed region, one may 
assume that the algorithm places the 3. and 4. key points to provide a better curvature in the 
highly stressed lower portion of the fillet rather than to minimize stresses in the upper 
portion. Accordingly, in these three trials, although the shapes of the upper portion are quite 
different, the lower portions are quite similar as seen in Figures 15, 17, and 19. 
 

 
Fig. 18. Separate search domains for four moving key points (Sonmez, 2008).  
 

 
Fig. 19. Stress distribution within the optimal shaped plate with a shoulder fillet defined by 
four key points (Sonmez, 2008).  

The fillet shape was then defined more precisely by six key points. Because such a high 
number of key points may lead to generation of very irregular shapes which are difficult to 
analyze by FEM, a small and separate search domain was defined for each key point (Fig. 
20). In order to decide on the location and size of the search domains, the optimal fillet 
shape defined by four key points was used. However, initial positions of the key points 
were again arbitrarily chosen by the algorithm within the search domains. If a key point in 
the best current configuration gets close to its border during the optimization process, its 
search domain was expanded. Fig. 21 shows the optimal shape and the stress distribution in 
the plate. The maximum equivalent stress is 340.82 MPa. 
Finally, the number of key points was increased to eight, and the fillet shape was optimized. 
This time, the maximum equivalent stress developed in the plate was 339.70 MPa. One may 
still find a better shape by further increasing the number of moving key points; however the 
small gain thus achieved does not justify the increased computational effort. In order to 
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validate the assumption that a protrusion was formed in the lower stressed region to 
provide the optimal curvature in the highly stresses region, this protrusion was removed 
and a FE analysis of the remaining plate was carried out. As seen in Fig. 22, the same stress 
state was obtained. 
 

 
Fig. 20. Separate search domains for 6 moving key points (Sonmez, 2008).  

 
Fig. 21. Stress distribution within the optimal shaped plate with a shoulder fillet defined by 
six key points (Sonmez, 2008).  

 
Fig. 22. Stress distribution within the optimal shaped plate with a shoulder fillet defined by 
eight key points. The protruding portion was removed (Sonmez, 2008).  
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Assuming that increasing the number of key points further does not lead to appreciable 
improvement in the objective function, one may consider the plate with the protrusion 
removed as the optimal shape. In that case, the stress concentration factor, Kq, calculated for 
the optimum shape is equal to 1.132. Considering that D/d ratio of the plate, which is 2.0, is 
quite large, one may not obtain such low values with circular fillet profiles except for very 
large fillets. The stress concentration factor for a circular fillet having the same transition 
length is about 20% higher.  

3. Topology optimization 
The objective in topology optimization is to find the best structural layout for a given 
loading as depicted in Fig. 23. In other words, the number, size, and (/or) shape of 
components and the way they are connected are optimized. Topology optimization may 
include shape optimization of individual components, which increases the difficulty of the 
problem.  
 

 
Fig. 23. An illustration of a topology optimization problem. 

The criteria of effectiveness according to which a configuration generated during an 
optimization process for the topology of the structure is evaluated are the same as that of a 
shape optimization problem. The objective is either minimizing weight or maximizing 
mechanical performance. The design variables may be existence or absence of material at a 
certain element as shown in Fig. 4, connectivity matrix of individual components, size of the 
individual parts etc. A number of researchers applied simulated annealing to topology-
optimization problems. (Dhingra & Bennage, 1995; Topping et al., 1996; Shim & 
Manoochehri, 1997; Liu et al., 1997; Bureerat & Kunakote, 2006; Lamberti & Pappalettere, 
2007). Their results show the promise of SA to solve topology optimization problems. 

3.1 Application of simulated annealing to topology optimization 
3.1.1 Optimal topology design of a torque arm 
Consider the optimal topology design problem of a torque arm solved by Shim & 
Manoochehri (1997) for the loading and radii of holes indicated in Fig. 9. The objective was 
to minimize the volume of the structure. The design variables were the existence or absence 
of material in the finite elements (Fig. 4). The maximum stress was constrained not to exceed 
the allowable stress. Another constraint was the maintenance of model connectivity such 
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that removing or adding material should not result in a disconnected structure. Fig. 24 
shows the initially chosen design and the finite element mesh and Fig. 25 shows the optimal 
topologies. They achieved about 90% reduction in volume and obtained quite different 
optimal topologies for different magnitudes of allowable stress. This shows that rules of 
thumb for optimal designs are not tenable. Small changes in material, boundary conditions, 
or geometry may greatly change optimal configurations.  
 

 
Fig. 24. The initial design and finite element mesh for torque arm (Shim & Manoochehri, 
1997). 
 

 
Fig. 25. The optimal topology designs for torque arm (Shim & Manoochehri, 1997). 

3.1.2 Optimal topology design of an MBB beam 
Bureerat & Kunakote (2006) considered a multi - objective optimization problem of 
minimizing both compliance and mass of an MBB beam depicted in Fig. 26. They also used a 
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material removal technique (Fig. 4) to generate different configurations. Connectivity of the 
structure was also chosen as a constraint. Fig. 26 shows the optimal topology of the beam 
obtained using SA algorithm. They also tried other global search algorithms like genetic 
algorithms (GA) and population-based incremental learning (PBIL) algorithm, and found 
the performance of SA to be better. 
 

 
Fig. 26. Initial design of an MBB beam (Bureerat & Kunakote, 2006). 

 
Fig. 27. Optimal topology of the MBB beam (Bureerat & Kunakote, 2006). 

 
Fig. 28. Various initial designs and the optimal design (Baumann & Kost, 2005). 
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3.1.3 Optimal topology design of a truss structure 
A number of researchers considered topology optimization of discrete structures like 
trusses. Baumann & Kost (2005) used three stochastic global search algorithms, SA, GA, and 
random cost, to find the optimal truss topology having the minimum weight. Starting with 
different initial configurations (Fig. 28), they employed these algorithms each time with a 
different random sequence and compared relative performance of these algorithms. SA 
turned out to be the most reliable of the three. SA located the optimal solution in 24 runs out 
of 25. Its success also did not depend on the initially chosen design.  

4. Composites optimization 
Composite materials are widely used in the industry because of their superior mechanical, 
thermal, and chemical properties, e.g. high stiffness-to-weight and strength-to-weight ratios, 
corrosive resistance, low thermal expansion, vibration damping. As a further advantage, 
composite materials offer a great flexibility in design, allowing change of the material 
system in many ways. Configurations of a laminate, i.e. fibre orientation, ply thickness, 
stacking sequence, type and volume fraction of reinforcement can be tailored to make a 
better use of material or attain a desired property, e.g. strength, elastic modulus, thermal 
and electrical conductivity, thermal expansion coefficient. One may thus significantly 
decrease the weight of a structure by optimizing the design of the composite material itself, 
or increase its performance using the same amount of material without changing the shape 
or topology of the structure.  
Because of large numbers of design variables, the traditional approach of designing by trial 
and error, which heavily relies on designer’s experience and intuition, promises little 
success. For that reason, optimization of composite materials drew the attention of many 
researchers. In these studies, various types of composite structures were considered for 
optimization: laminated composite plates or shells, hybrid laminates composed of layers 
with different materials, stiffened plates or shells, pressure vessels, pipes, stiffened 
cylinders, leaf springs, wrenches, beams, bolted joints, etc.  
The purpose of composites optimization is to find the best design for a composite materials 
system according to a chosen criterion under various constraints imposed by the 
requirements of the design. The optimum design provides either the most efficient and 
effective use of material or the best performance. The goal may be to minimize thickness, 
weight, cost, fatigue damage, displacements, dynamic response, stress concentration, or the 
difference between current and target values of material properties like elastic modulus, 
thermal conductivity, and density. In this type of optimizations, the problem is to find the 
design resulting in the minimum value of an undesired feature of the structure. On the other 
hand, the objective may be to maximize a desired property of the structure, i.e. the static 
strength of a composite laminate for a given thickness, strength-to-weight ratio, buckling 
strength, stiffness, energy absorption capacity, stiffness-to-weight ratio, etc. Besides, one 
may face with multi - objective optimization problems where cost and weight, weight and 
deflection, or weight and strain energy may be minimized; buckling strength, static strength 
together with stiffness may be maximized, etc. 
In order to optimize a composite structure, some of its features affecting the objective 
function are allowed to be changed; i.e. there should be some design variables, which may 
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be fibre orientation angle, layer thickness, material of the layers, geometric parameters, fibre 
volume fraction, types of matrix and fibre materials, type of reinforcement, parameters 
related to spacing, configuration, and geometry of stiffeners, etc. 
Although composite materials offer great flexibility in product design with a large number 
of design variables, this feature also leads to an immense number of locally optimum 
designs. Locating globally optimum designs for composite structures is a difficult problem 
requiring sophisticated optimization procedures. Locating the globally optimal material 
design with a local search algorithm is almost a hopeless enterprise. For this reason, many 
researchers preferred global search algorithms like genetic algorithms (Soremekun et al., 
2001; Todoroki & Tetsuya, 2004; Kang & Kim, 2005), simulated annealing algorithm (Soares 
et al., 1995; Jayatheertha et al., 1996; Sciuva et al., 2003; Correia et al., 2003; Erdal & Sonmez, 
2005; Moita et al., 2006; Akbulut & Sonmez, 2008), improving hit-and run (Savic et al., 2001). 

4.1 Application of simulated annealing to composite optimization 
4.1.1 Optimal design of a composite laminate for minimum thickness 
In this problem, the structure to be optimized is a symmetric 2-D multilayered structure 
reinforced by continuous fibres subject to in-plane normal and shear loading as shown in 
Fig. 29. Accordingly, no bending and twisting moments are considered in the analysis of its 
mechanical behaviour. The laminate consists of plies having the same thickness. The 
objective is to find the optimum design of the laminate to attain the minimum possible 
laminate thickness with the condition that it does not fail. The Tsai-Wu criterion of static 
failure together with the maximum stress criterion is employed to check static failure. The 
number of distinct fibre orientation angles, m, is given. The orientation angles, θk, and how 
many plies, nk, are oriented along each angle are to be determined in the design process. 
Accordingly, the number of design variables is 2m. The laminate thickness can be expressed 
as 

∑
=

=
m

k
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where to is the thickness of an individual ply and nk is  the number of  plies with  fibre  angle  
 

 
Fig. 29. An illustration of composite laminate (Akbulut & Sonmez, 2008). 
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θk. The factor ‘2’ appears because of the symmetry condition for the laminate with respect to 
its middle plane. Because the plies are made of the same material, minimizing thickness 
leads to the same optimum configuration as the minimization of weight. The orientation 
angles take discrete values; they are chosen from a given set of angles. According to the 
manufacturing precision, the interval between the consecutive angles may be 15°, 10°, 5°, 1°, 
0.5° or even smaller.  
Table 1 shows the optimal laminate designs for various biaxial loading cases obtained using 
two distinct fibre angles. For the loading case Nxx = 10, Nyy = 5, Nxy = 0 MPa⋅m, the optimal 
lay-up is [3727/-3727]s, which means 27 plies out of 54 are oriented with 37° and others with -
37°. When Nxx is increased to 20 MPa⋅m, strangely the thickness of the optimal laminate 
becomes smaller. This counter intuitive result can be explained by considering the 
differences in the stress states. When Nxx is increased to 20 MPa⋅m and the laminate design 
is changed to [3123/-3123]s, εxx increases from 0.323×10-2 to 0.729×10-2, εyy, on the other hand, 
turns from tension to (8.39×10-5) compression (-0.237×10-2) due to Poisson’s effect. The stress 
transverse to the fibres then decreases from 18.49 MPa to 15.85 MPa, while the other 
principal stresses (shear stress and normal stress along the fibre direction) increase. Because, 
the transverse tensile stresses are critical, a thinner laminate could carry a larger load. When 
Nxx is increased to 40 MPa⋅m, the same trend continues. However, when it is increased to 80 
or 120 MPa⋅m, a thicker laminate is required. 
 

Loading:      
Nxx / Nyy  / Nxy 

(MPa.m) 

Optimum lay-up 
sequences 

Half 
laminate 
thickness 

Safety 
factor for 
Tsai-Wu 

Safety 
factor for 

max. stress 

10 / 5 / 0 [3727/-3727]s 54 1.0068 1.0277 

20 / 5 / 0 [3123/-3123]s 46 1.0208 1.1985 

40 / 5 / 0 [2620/-2620]s 40 1.0190 1.5381 

80 / 5 / 0 [2125/-1928]s 53 1.0113 1.2213 

120 / 5 / 0 [1735/-1735]s 70 1.0030 1.0950 

Table 1. The optimum lay-ups obtained using two distinct fibre angles for various biaxial 
loading cases (Akbulut & Sonmez, 2008).  

5. Conclusions 
In typical structural optimization problems, there are quite numerous local optimum 
designs. Use of a local search algorithm even with multiple starts is not a viable approach. 
For this reason, one needs to apply a global search algorithm like simulated annealing. Some 
researchers compared performances of a number of global search algorithms and found SA 
to be better. Its reliability, that means the probability of locating globally optimum design, 
was found to be the highest of all. The main disadvantage of SA is computational 
inefficiency. For this reason, one needs to find some ways of increasing its efficiency like 
judiciously choosing search domain or using SA together with local search algorithms. 
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Many of the optimal structural designs found by the researchers are counter to the intuition 
of designers. Even an experienced designer may not guess the optimal shape in many cases. 
Besides some changes in material, geometry or boundary conditions were observed to lead 
to quite discrepant optimal structural designs. This means that simple rules of thumb for 
optimal designs are not justifiable.  
A global optimization scheme should search a large domain in order to find the globally 
optimal design. If only near neighbourhood of the initial design is searched, one may regard 
the resulting optimal design only as an improvement over the current one not as the 
globally optimum one. Searching a large domain can be achieved by allowing large changes 
in the current configurations to obtain a new configuration. As in the physical annealing 
process, where the mobility of the atoms decrease during cool down, the extent of changes 
should be reduced in later stages of optimization. 
By defining the structural configuration more precisely by using a large number of design 
variables, one may obtain a better optimal design. Although increased precision poses 
difficulties for the algorithm to locate the globally optimal design accurately, one may find 
ways of overcoming this difficulty.  
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1. Introduction 
Early attempts of optimised structural designs go back to the 1600s, when Leonardo da 
Vinci and Galileo conducted tests of models and full-scale structures [1]. A 1994`s review of 
structural optimization can be found in the study by Cohn and Dinovitzer [2], who pointed 
out that there was a gap between theoretical studies and the practical application in practice. 
They also noted the short number of studies that concentrated on concrete structures. A 
review of structural concrete optimization can be found in the 1998`s study by Sarma and 
Adeli [3]. The methods of structural optimization may be classified into two broad groups: 
exact methods and heuristic methods. The exact methods are the traditional approach. They 
are based on the calculation of optimal solutions following iterative techniques of linear 
programming [4,5]. The second main group comprises the heuristic methods, whose recent 
development is linked to the evolution of artificial intelligence procedures. This group 
includes a broad number of search algorithms [6-9], such as genetic algorithms, simulated 
annealing, threshold accepting, tabu search, ant colonies, etc. These methods have been 
successful in areas different to structural engineering [10]. They consist of simple 
algorithms, but require a great computational effort, since they include a large number of 
iterations in which the objective function is evaluated and the structural restrictions are 
checked.  
Among the first studies of heuristic optimization applied to structures, the contributions of 
Jenkins [11] and of Rajeev and Krishnamoorthy [12] in the early 1990s are to be mentioned. 
Both authors applied genetic algorithms to the optimization of the weight of steel structures. 
As regards RC structures, early applications in 1997 include the work of Coello et al [13], 
who applied genetic algorithms to the economic optimization of RC beams. Recently, there 
has been a number of RC applications [14-16], which optimize RC beams and building 
frames by genetic algorithms. Also recently, our research group has applied simulated 
annealing and threshold acceptance to the optimization of walls, frame bridges and building 
frames [17-20]. However, despite advances on structural concrete optimization, present 
design-office practice of concrete structures is much conditioned by the experience of 
structural engineers. Most procedures are based on the adoption of cross-section dimensions 
and material grades based on sanctioned common practice. Once the structure is defined, it 
follows the analysis of stress resultants and the computation of passive and active 
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reinforcement that satisfy the limit states prescribed by concrete codes. Should the 
dimensions or material grades be insufficient, the structure is redefined on a trial and error 
basis. Such process leads to safe designs, but the economy of the concrete structures is, 
therefore, very much linked to the experience of the structural designer. 
     The structures object of this work are walls, portal frames and box frames which are 
usually built of RC in road construction and RC frames widely used in building 
construction. RC earth retaining walls are generally designed with a thickness at the base of 
1/10 of the height of the wall and a footing width of 0.50-0.70 the height of the wall. Box and 
portal frames are used with spans between 3.00 and 20.00 m for solving the intersection of 
transverse hydraulic or traffic courses with the main upper road. Box frames are preferred 
when there is a low bearing strength terrain or when there is a risk of scour due to flooding. 
The depth of the top and bottom slab is typically designed between 1/10 to 1/15 of the 
horizontal free span; and the depth of the walls is typically designed between 1/12 of the 
vertical free span and the depth of the slabs. Building frames have typical horizontal beams 
of 5.00 to 10.00 m of horizontal span that sustain the vertical loads of the floors and transfer 
them to vertical columns of height between 3.00 to 5.00 m. Moderate horizontal loads are 
usually included in the design, but high levels of horizontal loading are transferred to 
adjacent shear walls. The structures here analyzed are calculated to sustain the loads 
prescribed by the codes and have to satisfy all the limit states required as an RC structure. 
The method followed in this work has consisted first in the development of evaluation 
computer modules where dimensions, materials and steel reinforcement have been taken as 
design variables. These modules compute the cost of a solution and check all the relevant 
structural limit states. Simulated annealing is then used to search the solution space. 

2. Simulated annealing optimization procedure 
2.1 Problem definition 
The structural concrete design problem that is put forward in the present study consists of 
an economic optimization. It deals with the minimization of the objective function F of 
expression (1), satisfying also the structural constraints of expressions (2). 
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Note that the objective function in expression (1) is the sum of unit prices multiplied by the 
measurements of the construction units (concrete, steel, formwork, etc). And that the 
constraints in expression (2) are all the service and ultimate limit states that the structure 
must satisfy. Unit prices considered are given in Table 1 and 2. 

2.2 Simulated annealing procedure 
The search method used in this study is the simulated annealing (SA henceforth), that was 
originally proposed by Kirkpatrick et al. [21] for the design of electronic circuits. The SA 
algorithm is based on the analogy of crystal formation from masses melted at high 
temperature and let cool slowly. At high temperatures, configurations of greater energy 
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Unit Cost (€) 
kg of steel (B-500S) 0.58 

m2 of lower slab formwork 18.03 
m2 of wall formwork 18.63 

m2 of upper slab formwork 30.65 
m3 of scaffolding 6.01 

m3 of lower slab concrete (labour) 5.41 
m3 of wall concrete (labour) 9.02 

m3 of upper slab concrete (labour) 7.21 
m3 of concrete pump rent 6.01 

m3 of concrete HA-25 48.24 
m3 of concrete HA-30 49.38 
m3 of concrete HA-35 53.90 
m3 of concrete HA-40 59.00 
m3 of concrete HA-45 63.80 
m3 of concrete HA-50 68.61 
m3 of earth removal 3.01 

m3 of earth fill-in 4.81 

Table 1. Basic prices of the cost function for the road structures. 
 

Unit Cost (€) 
kg of steel (B-500S) 1.30 

m2 of beams formwork 25.05 
m2 of columns formwork 22.75 
m2 of beams scaffolding 38.89 

m3 of concrete HA-25 78.40 
m3 of concrete HA-30 82.79 
m3 of concrete HA-35 98.47 
m3 of concrete HA-40 105.93 
m3 of concrete HA-45 112.13 
m3 of concrete HA-50 118.60 

Table 2. Basic prices of the cost function for the building frames. 
than previous ones may randomly form, but, as the mass cools, the probability of higher 
energy configurations forming decreases. The process is governed by Boltzmann expression 
exp(-ΔE/T), where ΔE is the increment of energy of the new configuration and T is the 
temperature. The present algorithm starts with a feasible solution randomly generated and a 
high initial temperature. The present SA algorithm then modifies the initial working 
solution by a small random move of the values of the variables. The new current solution is 
evaluated in terms of cost. Lower cost solutions are accepted and greater cost solutions are 
only accepted when a 0 to 1 random number is smaller than the expression exp(-ΔE/T), 
where ΔE is the cost increment and T is the current temperature. The current solution is then 
checked against structural constraints and it is adopted as the new working solution when it 
is feasible, i.e. when it satisfies the structural constraints. On the other hand, the current 
solution is discarded when it does not satisfy the structural constraints. The procedure is 
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repeated many times, which give way to a trajectory of feasible solutions that start in the 
initial solution and ends up in the converged solution result. The initial temperature is 
decreased geometrically (T=kT) by means of a coefficient of cooling k. A number of iterations 
called Markov chains is allowed at each step of temperature. The algorithm stops when the 
temperature is a small percentage of the initial temperature (typically 1% and 1-2 chains 
without improvements). The SA method is capable of surpassing local optima at high-
medium temperatures and gradually converges as the temperature reduces to zero. The SA 
method requires calibration of the initial temperature, the length of the Markov chains and 
the cooling coefficient. Adopted values for the four examples of this study will be given 
below. The initial temperature was adjusted following the method proposed by Medina [22], 
which consists in choosing an initial value and checking whether the percentage of 
acceptances of higher energy solutions is between 10-30 percent. If the percentage is greater 
than 30%, the initial temperature is halved; and if it is smaller than 10%, the initial 
temperature is doubled. Computer runs were performed 9 times so as to obtain minimum, 
mean and standard deviation of the random results. Note that the algorithm is random in 
the initial solution and in the moves from one solution to the next in the trajectory and, 
hence, results are basically random. This random nature makes necessary to run several 
times the algorithm so as to obtain a statistical population of results. 

3. Application to earth retaining walls 
The problem defined in section 2.1 is firstly applied to earth retaining RC cantilever walls 
used in road construction. This type of structure has already being studied by the authors in 
Ref. 17, which gives a detailed account of the analysis and optimization of this type of walls, 
while the present section gives an outline and two additional examples. Fig.1 shows the 22 
design variables presently considered for the modelling of the walls. They include 4 
geometrical variables (the thickness of the stem and 3 dimensions for the footing), 4 concrete 
and steel grades (stem and footing) and 14 variables for the definition of steel reinforcement, 
which includes both areas of reinforcement and bar lengths. Variables are continuous except 
for material grades which are discrete. The modelling of the reinforcement in concrete 
structures is very important. It has to be detailed enough to cover the variation of structural 
stress resultants, but not to complex in order to maintain a certain degree of simplicity and 
practicability. Note that the present arrangement includes three vertical bars for the main 
tension reinforcement in the kerb (A1 to A3 in Fig. 1), tension top and bottom reinforcement 
bars in the footing (A9 and A8) and stirrups in the footing and the bottom part of the kerb 
(A11 and A7). The remaining bars are basically minimum amounts of reinforcement for 
shrinkage and thermal effects. Apart from the design variables, a total of 17 parameters are 
considered for the complete definition of the problem. The most relevant parameters are the 
total height of the wall H (stem plus footing, see Fig.1), the top slope of the fill and the acting 
top uniform distributed load, the internal friction angle of the fill φ, the permissible ground 
stress and the partial coefficients of safety. Structural constraints considered followed a 
standard analysis by Calavera [23], which includes checks against sliding, overturning, 
ground stresses and service-ultimate limit states of flexure and shear of different cross-
sections of the wall and the footing. No vertical inclination of the earth pressure was 
considered. Additionally, a constraint of deflection at the top of 1/150 of the height of the 
stem was also considered. 
The simulated annealing algorithm was programmed in Visual Basic 6.3 with an Excel 
input/output interface. Typical runs were 21 minutes in a Pentium IV of 2.41 GHz. The 
calibration of the SA recommended Markov chains of 1000 iterations and a cooling 
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coefficient of 0.80. As regards the type of moves, the most efficient move found consisted of 
random variation of 14 of the 22 design variables. Fig. 2 shows a typical cost evolution by 
the SA algorithm. Table 3 gives the details of parameters for the two walls analysed of 5.20 
and 9.20 m of total height (H in Fig.1). Table 4 details the design results of the SA analysis 
for the two walls. The total cost of the walls is 505.06 and 1536.47 euros/m. Results indicate 
that the inclusion of a limit on deflections of 1/150 of the height of the stem is crucial, since 
otherwise the slenderness of the stem goes up to 1/24 and deflections are as high as 1/40 of 
the height of the stem. Should the top deflection be limited to 1/150, the slenderness goes 
down to 1/11.4 and 1/9.4, which is quite similar to the standard 1/10 adopted in practice by 
many practitioners.  

 
Figure 1. Variables of earth retaining walls for case study 1. 

 
Figure 2. Typical cost evolution of SA algorithm. 
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Top slope of the fill 0 
Uniform distributed load on top surface 10 kN/m2 

Specific weight of the fill 20 kN/m3 
Internal friction angle of the fill 30º 
Inclination of the earth pressure 0º 

Ground friction coefficient 0.577 
Permissible ground stress 0.3 MPa 

Overturning safety coefficient 1.8 
Sliding safety coefficient 1.5 
Execution type of control Normal 

ULS safety coefficient of concrete 1.50 
ULS safety coefficient of steel 1.15 

Max.displacement of the kerb/height of kerb 150 
EHE ambient type IIa 

Table 3. Parameters of the reported walls (total height 5.20 and 9.20 m) 

Variable H = 5.2 m H = 9.2 m 
b 0.43 m 0.91 m 
p 0.30 m 0.67 m 
t 1.34 m 2.10 m 
c 0.30 m 1.07 m 

fck,ste 35 MPa 40 MPa 
fck,foo 25 MPa 25 MPa 
fyk,ste 500 MPa 500 MPa 
fyk,foo 500 MPa 500 MPa 

A1 9.26 cm2 22.35 cm2 
A2 3.04 cm2 2.89 cm2 
A3 4.49 cm2 10.97 cm2 
A4 1.95 cm2 2.72 cm2 
A5 4.65 cm2 9.82 cm2 
A6 9.21 cm2 19.42 cm2 
A7 0.00 cm2 0.00 cm2 
A8 8.52 cm2 18.94 cm2 
A9 12.05 cm2 19.44 cm2 
A10 6.06 cm2 12.75 cm2 
A11 0.00 cm2 0.00 cm2 
L1 0.97 m 2.80 m 
L2 0.54 m 0.98 m 
L3 0.00 m 0.00 m 

Table 4. Summary of best walls (total height 5.20 and 9.20 m) 

4. Application to road portal frames 
The second example studied relates to portal RC frames used in road construction [24]. Fig. 
3 shows the 28 variables considered in this analysis. Variables include 5 geometrical values: 
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the depth of the walls, the depth of the top slab and the depth of the footing, plus 2 
dimensions for the size of the base of the footing; 3 different grades of concrete for the 3 
types of elements; and 20 types of reinforcement bars following a standard setup. The 
reinforcement setup includes 2 variables for the basic negative bending moments, A1 and 
A8, plus a corner additional bar of area A7. The positive bending moment in the top slab and 
the wall is covered by bars A2 and A9. And positive and bending moments in the footing are 
covered by bars A15 and A16. Additionally several other bars cover shear in the different 
parts of the frame. All variables are discrete in this analysis. The total number of parameters 
is 16, the most important of which are the horizontal free span, the vertical free span, the 
earth cover, the permissible bearing stress and the partial coefficients of safety. Structural 
constraints considered followed standard provisions for Spanish design of this type of 
structure  [25,26], that include checks of the service and ultimate limit states of flexure and 
shear for the stress envelopes due to the traffic loads and the earth fill. Traffic loads 
considered are a uniform distributed load of 4 kN/m2 and a heavy vehicle of 600 kN. Stress 
resultants and reactions were calculated by an external finite element program using a 2-D 
mesh with 30 bars and 31 sections (out of plane bending moments had to be assumed as a 
practical one fifth  proportion of in plane bending moments). Deflections were limited to 
1/250 of the free span for the quasi-permanent combination. Fatigue of concrete and steel 
was not considered since this ultimate limit state is rarely checked in road structures. 

 
Figure 3. Variables for the RC portal frame. 

The SA algorithm was programmed in Visual Basic 6.3. Typical runs were 10.76 hours in an 
AMD Athlon processor of 1.49 GHz. In this case, the calibration recommended Markov 
chains of 375 iterations and a cooling coefficient of 0.70, the total amount of iterations being 
about 7500. The most efficient move found consisted of random variation of 4 of the 28 
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variables of the problem. Table 5 details the main results of the SA analysis for two portal 
frames of 10.00 and 15.00 m of horizontal free span, 6.00 m of vertical free span and 0.10 m 
of asphalt cover (additional parameters are 0.25 MPa permissible bearing stress, specific 
weight of the fill of 20 kN/m3, 30 degrees internal friction angle of the fill and partial safety 
coefficients of 1.60 for loading and 1.50-1.15 for concrete-steel as materials). The depth of the 
top slab is only 0.375 m for the 10.00 m span, which means a very slender span/depth ratio 
of 26.67. The cost of this solution is 2619 euros/m. This best solution was then checked by 
hand calculations against fatigue of structural concrete. The loading considered was a 468 
kN heavy vehicle prescribed for fatigue by the Spanish loading code for bridges [25]. It was 
found that the solution did not comply with Eurocode 2 limitations for fatigue [27]. Hence, it 
was concluded that this rarely checked ULS should be included in future works of 
optimization dealing with road structures. 
 

Variables L=10.00 m L=15.00 m 
Slab depth 

d dd d h
0.375 m 0.450 m 

Wall thickness 0.400 m 0.475 m 
Footiing depth 0.400 m 0.400 m 

Footing toe 0.950 m 0.650 m 
Footing heel 0.750 m 1.650 m 
Footing conc. HA-25 HA-30 
Wall concrete HA-25 HA-25 
Slab concrete HA-25 HA-25 

A1 15ø12/m 15ø12/m 
A2 10ø20/m 10ø25/m 
A6 12.06 cm2/m 12.56 cm2/m 
A7 15ø12/m 12ø20/m 
A8 8ø16/m 10ø16/m 
A9 12ø8/m 6ø16/m 
A15 10ø16/m 12ø12/m 
A16 12ø10/m 12ø8/m 
A20 9.05 cm2/m 11.30 cm2/m 

Table 5. Summary of best portal frames. 

5. Application to road box RC frames 
The third example studied relates to box RC frames used in road construction. A detailed 
account of the modelling of frames and the SA-TA proposed algorithms can be found in the 
study by Perea et al [18]. The present section gives an outline of the analysis and 
optimization procedures and an additional example. Fig. 5 shows the 44 variables 
considered in this analysis for the modelling of the frames. Variables include 2 geometrical 
values: the depth of the walls and slabs; 2 different grades of concrete for the 2 types of 
elements; and 40 types of reinforcement bars and bar lengths following a standard setup. 
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The reinforcement setup includes 3 variables for the basic negative bending moments, A14, 
A8 and A1, plus two corner additional bars of area A6 and A12. The positive bending moment 
in the top slab, the bottom slab and the wall is covered by pairs of bars A2-A3, A13-A15 and 
A7-A9. Additionally several other bars cover shear in the different parts of the frame. All 
variables are again discrete in this analysis. The most important parameters are the 
horizontal free span, the vertical free span, the earth cover, the ballast coefficient of the 
bearing and the partial coefficients of safety. Structural restrictions considered followed 
standard provisions similar to those of portal frames. However, this time the ULS of fatigue 
was included following the conclusions from the previous section. Stress resultants and 
reactions were calculated by an external finite element program using a 2-D mesh with 40 
bars and 40 sections. 

 
Figure 5. Variables for the RC box frame. 

The SA algorithm was programmed this time in Compaq Visual Fortran Professional 6.6.0. 
Typical runs reduced to 20 seconds in a Pentium IV of 2.4 GHz. In this case, the calibration 
recommended Markov chains of 500 iterations and a cooling coefficient of 0.90. The most 
efficient move found was random variation of 9 variables of the 44 of the problem. Fig. 6 
details the main results of the SA analysis for a box frame of 13.00 m of horizontal free span, 
6.17 m of vertical free span and 1.50 m of earth cover (additional parameters are 10 MN/m3 
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ballast coefficient, specific weight of the fill of 20 kN/m3, 30 degrees internal friction angle 
of the fill and partial safety coefficients of 1.50 for loading and 1.50-1.15 for concrete-steel as 
materials). The cost of this solution is 4478 euros/m. The depth of the slabs is 0.65 m of C30 
(30 MPa of characteristic strength), which represents a slender span/depth ratio of 20. And 
the depth of the wall is 0.50 m in C45, which represents a vertical span/depth ratio of 12.34. 
The overall ratio of reinforcement in the top slab is 160 kg/m3. It may, hence, be concluded 
that results of the optimization search tend to slender and highly reinforced structural box 
frames. As regards deflections and fatigue limit states, their inclusion has shown to be 
crucial. Neglecting both limit states leads to a 7.9% more economical solution, but obviously 
unsafe. It is important to note that fatigue checks are usually considered in railways designs 
but, on the other hand, they are commonly neglected in road structures design and, as it has 
been shown, this may lead to unsafe designs. 
 

 
Figure 6. Optimized design of RC box frame. 

6. Application to RC building frames 
The last example studied relates to RC frames commonly used in building construction. A 
detailed account of the modelling of frames and the SA proposed algorithms is done in the 
study by Payá et al [19]. The present section gives an outline of the analysis and 
optimization procedures and an additional example. The RC frame studied here is the 
symmetrical frame of 2 bays and 5 floors shown in Fig. 7. This example has 95 variables, 
including 5 material types of concrete, 30 cross-section dimensions and 60 passive 
reinforcement bars following a standard setup in columns and beams.  Fig. 8 shows a typical 
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longitudinal reinforcement setup of the beams of the structure. It includes a basic top and 
bottom bars and positive and negative extra reinforcements of a standard length. Variables 
for beam stirrups include 3 zones of left, central and right positions of transverse 
reinforcement. Longitudinal reinforcement of columns includes 330 possible values and it 
varies from a minimum of 4ø12 to a maximum of 34ø25 whereas transverse reinforcement of 
columns includes 21 possible values. The most important parameters are the horizontal 
spans of the bays, the vertical height of the columns, the vertical and horizontal loads 
considered and the partial coefficients of safety. Structural restrictions considered followed 
standard provisions for Spanish design of this type of structure [26,28], that include checks 
of the service and ultimate limit states of flexure, shear and instability for the stress 
envelopes due to the vertical loads and the horizontal wind loads. Vertical loads amount to 
a total uniform distributed load of 35 kN/m (7.00 kN/m2 of self weight plus life load and 
5.00 m of spacing between parallel frames). As regards wind loads, they amount to a total 
uniform distributed load of 4.5 kN/m. Stress resultants and reactions were calculated by an 
internal matrix method program using a 2-D mesh. Deflections were limited to 1/250 of the 
horizontal span for the total load and to 1/400 for the active deflection; which is the part of 
the deflection measured after construction of the elements that can be damaged due to 
vertical displacements.  

 
Figure 7. Typical RC building frame of 2 bays and 5 floors. 

The SA algorithm was programmed in Compaq Visual Fortran Professional 6.6.0. Typical 
runs took a time of 97 minutes in a Pentium IV of 3.2 GHz. In this case, the calibration 
recommended Markov chains of 105000 iterations, a cooling coefficient of 0.80 and two 
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Markov chains without improvement as stop criterion. The most efficient move found was 
random variation of 3 or up to 3 variables of the 95 of the problem. Tables 3, 4 and 5 detail 
the main results of the best SA analysis for the building frame of Fig. 7. The cost of this 
solution is 4458.08 euros.  Concrete is HA-45 in the whole structure. The restrictions that 
guided the design were the ultimate limit states of flexure and shear in beams and instability 
in columns, and the service limit state of deflections in beams. 
 

 
 

Figure 8. Typical longitudinal reinforcement bars of the beams of RC building frames. 
 

Dimensions (cm) Top reinforcement 
Beam 

Depth Width Base Extra Left Extra 
Right 

B-1 0.48 0.20 2ø20 - 1ø25 
B-2 0.50 0.20 2ø16 1ø10 2ø20 
B-3 0.50 0.20 2ø10 1ø20 2ø25 
B-4 0.51 0.21 2ø10 2ø12 3ø16 
B-5 0.54 0.22 2ø10 1ø16 2ø25 

Table 3. Beam results of the SA: dimensions and top reinforcement 
 

Bottom reinf. Shear reinforcement Beam 
Base Extra Left Span Right 

B-1 3ø12 2ø10 Ø8/25 Ø8/30 Ø6/10 
B-2 3ø12 2ø10 Ø8/25 Ø8/30 Ø8/20 
B-3 2ø12 1ø20 Ø6/15 Ø6/15 Ø10/30 
B-4 4ø10 1ø16 Ø6/15 Ø8/30 Ø8/20 
B-5 4ø10 2ø10 Ø8/30 Ø8/30 Ø6/15 

Table 4. Beam results of the SA: bottom and shear reinforcement 
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Dimensions 
(cm) Longitudinal Reinforcement Column 

a b Corners Side a Side b 
Ties 

C-1 0.25 0.25 4ø12 - - Ø6/15 
C-2 0.25 0.25 4ø16 - - Ø6/15 
C-3 0.25 0.25 4ø12 2ø12 - Ø6/15 
C-4 0.25 0.25 4ø12 - 2ø12 Ø6/15 
C-5 0.25 0.25 4ø16 - - Ø6/15 
C-6 0.25 0.45 4ø12 - 2ø12 Ø6/15 
C-7 0.25 0.40 4ø12 - - Ø6/15 
C-8 0.25 0.40 4ø12 - - Ø6/15 
C-9 0.25 0.35 4ø12 - - Ø6/15 
C-10 0.25 0.30 4ø12 - - Ø6/15 

Table 5. Column results of the SA for Column results of the SA (columns “b” side is parallel 
to beams axis). 

6. Conclusions 
As regards the SA procedure, it has proved an efficient search algorithm for the 4 case 
studies of walls, portal and box frames used in road construction and building frames. The 
study of earth retaining walls optimization shows that the inclusion of a limit of 1/150 on 
the deflection of the top of the walls is needed. Otherwise, results of the SA optimization are 
excessively deformable. Results of the optimization of portal road frames indicated the need 
of including the rarely checked ULS of fatigue in the list of structural restrictions for the 
optimization of road structures. The study of road box frames shows the importance of the 
inclusion of the SLS of deflections and the ULS of fatigue. The SA optimization of the 13 m 
free horizontal span box frame results in a slender and highly reinforced top slab. Results of 
the optimization of the building frame indicate that instability in columns and flexure, shear 
and deflections in beams are the main restrictions that condition its design.  
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1. Introduction 
Simulated Annealing (SA) is a widely used meta-algorithm for complex optimization 
problems. This chapter presents methods to distribute executable tasks onto a set of 
processors. This process is called task mapping. The most common goal is to decrease 
execution time via parallel computation. However, the presented mapping methods are not 
limited to optimizing application execution time because the cost function is arbitrary. The 
cost function is also called an objective function in many works. A smaller cost function 
value means a better solution. It may consider multiple metrics, such as execution time, 
communication time, memory, energy consumption and silicon area constraints. Especially 
in embedded systems, these other metrics are often as important as execution time. 
A multiprocessor system requires exploration to find an optimized architecture as well as 
the proper task distribution for the application. Resulting very large design space must be 
pruned systematically with fast algorithms, since the exploration of the whole design space 
is not feasible. Iterative algorithms evaluate a number of application mappings for each 
architecture, and the best architecture and mapping is selected in the process. 
The optimization process is shown in Figure 1(a). The application, the HW platform and an 
initial solution are fed to a mapping component. The mapping component generates a new 
solution that is passed to a simulation component. The simulation component determines 
relevant metrics of the solution. The metrics are passed to a cost function which will 
evaluate the badness (cost) of the solution. The cost value is passed back to the mapping 
component. The mapping component will finally terminate the optimization process and 
output a final solution. 
The system that is optimized is shown in Figure 1(b). The system consists of the application 
and the HW platform. The application consists of tasks which are mapped to processing 
elements (PEs). The PEs are interconnected with a communication network. 
The chapter has two focuses: 
• optimize the cost function and 
• minimize the time needed for simulated annealing. 
First, the task distribution problem is an NP problem which implies that a heuristic 
algorithm is needed. The focus is on reaching as good as possible mapping. Unfortunately 
the true optimum value is unknown for most applications, and therefore the relative 
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goodness of the solution to the true optimum is unknown. Experiments rely on convergence 
rates and extensive simulations to reduce this uncertainty. This chapter focuses on single-
objective rather than multi-objective optimization. 
 

 
Figure 1(a). Optimization process. Boxes indicate data. Ellipses indicate operations. This 
chapter focuses on the mapping part. 
 

 
Figure 1(b). The system that is optimized. The system consists of the application and the 
HW platform. PE is processing element. 

Second, the focus is minimizing the optimization time. A valid solution must be found in a 
reasonable time which depends on the application and the target multiprocessor platform. 
This chapter is structured as follows. We first introduce the problem of mapping a set of 
tasks onto a multiprocessor system. Then, we present a generic SA algorithm and give 
detailed analysis how the major functions may be implemented. That is followed by an 
overview of reported case studies, including our own. Last we discuss the findings and 
present the most important open research problems. 
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2. Task mapping problem 
The application in Figure 1(b) is divided into tasks. Tasks are defined as smallest 
components in the application that can be relocated to any or some PEs in the HW platform. 
A mapping algorithm will find a location for each task on some PE. The application model is 
irrelevant for the general mapping problem as long as the application model has mappable 
tasks. Mapping can be done on run-time or design-time. There are several types of 
application models that are used in literature: directed acyclic task graphs (Kwok & Ahmad, 
1999), Kahn Process Networks (Wikipedia, 2008b) and others. 
The mapping affects several properties of the system. Affected hardware properties are 
processor utilization, communication network utilization and power. Affected software 
and/or hardware properties are execution time,  memory usage, and application and 
hardware context switches. 

2.1 Application model 
Tasks can be dependent on each other. Task A depends on task B if task A needs data or 
control from task B. Otherwise tasks are independent. There are application models with 
dependent and independent tasks. Models with independent tasks are easier to map 
because there is zero communication between tasks. This enables the problem to be solved 
in separate sub-problems. However, independent tasks may affect each other if they 
compete for shared resources, such as a PE or a communication network. Scheduling 
properties of the application model may complicate evaluating a mapping algorithm. 

2.2 Hardware platform model 
The HW platform in Figure 1(b) can be heterogeneous which means that it executes different 
tasks with different characteristics. These characteristics include speed and power, for 
example. This does not complicate the mapping problem, but affects the simulation part in 
Figure 1(a). The mapping problem is the same regardless of the simulation accuracy, but the 
mapping solution is affected. This enables both fast and slow simulation models to be used 
with varying accuracy. Inaccurate models are usually based on estimation techniques. 
Accurate models are based on hardware simulation or native execution of the system that is 
being optimized. Accurate models are usually much slower than inaccurate models and 
they may not be available at the early phase of the system design. 
Depending on the application model, all PEs can not necessarily execute all tasks. 
Restricting mappability of tasks makes the optimization problem easier and enables shortcut 
heuristics to be used in optimization. The previous definition for tasks excludes application 
components that can not be relocated, and therefore each task has at least 2 PEs where it can 
be executed. 

2.3 Limiting the scope of problems 
We assume that communicating between two processors is much more expensive than 
communicating within a single processor. To generalize this idea, it is practically happening 
inside single processor computer systems because registers can be 100 times as fast as 
physical memory, and cache memory is 10 times as fast as physical memory. Multiprocessor 
systems could spend thousands of cycles to pass a message from one processor to other. 
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This trend is constantly changing as multicore and non-asymmetric computer architectures 
are becoming more common. 
We also assume that distributed applications are not embarrassingly parallel (Wikipedia, 
2008a). 
Without previous two assumptions the optimization algorithms can be trivially replaced 
with on-demand best-effort distributed job queues. 
This paper only considers the single-objective optimization case. Single-objective 
optimization finds the minimum for a given objective function. Multi-objective optimization 
tries to minimize several functions, and the result is a set of trade-offs, or so called Pareto-
optimal solutions. Each trade-off solution minimizes some of the objective functions, but not 
all. Having a systematic method for selecting a single solution from the trade-off set reduces 
the problem into a single-objective optimization task. 

2.4 Random mapping algorithm 
Random mapping algorithm is a simple Monte Carlo algorithm that randomizes processor 
assignment of each task at every iteration. The Monte Carlo process converges very slowly 
as it does not have negative feedback for moves into worse mappings. Random mapping 
algorithm is important because it sets the reference for minimum efficiency of any mapping 
algorithm. Any mapping algorithm should be able to do better than random mapping. 
Simulated Annealing algorithm produces a "Monte Carlo -like" effect at very high 
temperatures as almost all worsening moves are accepted. 

3. Simulated annealing 
Simulated Annealing is a probabilistic non-greedy algorithm (Kirkpatrick et al., 1983) that 
explores the search space of a problem by annealing from a high to a low temperature. 
Probabilistic behavior means that SA can find solutions of different goodness between 
independent runs. Non-greedy means that SA may accept a move into a worse state, and 
this allows escaping local minima. The algorithm always accepts a move into a better state. 
Move to a worse state is accepted with a changing probability. This probability decreases 
along with the temperature, and thus the algorithm starts as a non-greedy algorithm and 
gradually becomes more and more greedy. 
This chapter focuses only on using SA for mapping. The challenge is to find efficient 
optimization parameters for SA. (Braun et al., 2001) is a comparison of different mapping 
algorithms, such as Tabu Search, Genetic Algorithms, Load Balancing algorithms and others. 
Figure 2 shows an example of SA optimization process. Optimization begins from a high 
temperature where the accepted cost changes chaotically. As the temperature decreases the 
accepted cost changes less chaotically and the algorithm becomes greedier. 
Figure 3 shows the general form of Simulated Annealing algorithm pseudo-code. Table 1 
shows symbols, functions and various parameters for the pseudo-code. The algorithm starts 
with an initial solution 0S  (state). SA iterates through solutions until a termination 
condition is reached. At each temperature level, SA moves one or several tasks to different 
PEs and evaluates the cost of the new mapping solution. Then SA either accepts or rejects 
the new solution. If the new solution is accepted, it is used as a basis for the next iteration. 
Otherwise, the new solution is thrown away. 
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Figure 2. Cost per iteration plotted for Simulated Annealing when mapping a 100 task 
application to a 4 processor system. The cost is normalized so that initial cost 0 1.0C = . The 
plot is average filtered with a 256 sample window to hide the chaotic nature of the random 
process. This is also the reason why accepted cost does not always seem to touch the best 
cost line. 

Simulated Annealing(S0)
1 S ← S0

2 C ← Cost(S0)
3 Sbest ← S
4 Cbest ← C
5 R← 0
6 for i← 0 to ∞
7 do T ← Temp(i)
8 Snew ←Move(S, T )
9 Cnew ← Cost(Snew)

10 ΔC ← Cnew − C
11 if ΔC < 0 or Accept(ΔC, T )
12 then if Cnew < Cbest

13 then Sbest ← Snew

14 Cbest ← Cnew

15 S ← Snew

16 C ← Cnew

17 R← 0
18 else R← R + 1
19 if Terminate(i, R) = True
20 then break
21 return Sbest

 
Figure 3. Pseudo-code of the Simulated Annealing algorithm. See Table 1 for explanation of 
symbols. 



 Simulated Annealing 

 

326 

Symbol Value range Definition A B C
Accept(ΔC, T ) {False,True} Return accept (True) or B

reject (False) for a worsening move B
C = Cost() C > 0 Accepted cost (to be minimized) B
C0 C0 > 0 Initial cost C
Cnew Cnew > 0 Cost of the next state C
ΔC = Cnew − C R Change of cost due to move C
i i > 0 Mapping iteration C
L L > 0 # Iterations per temperature level B
M M > 1 Number of processors A
N N > 1 Number of tasks A
q 0 < q < 1 Geometric temperature scaling factor B
R R ≥ 0 Number of consecutive rejected moves B
S mapping space Accepted state C
S0 mapping space Initial state B
Snew mapping space Next state C
Move(S, T ) mapping space Returns the next state B
T = Temp(i) T > 0 Return temperature T at iteration i B
T0 T0 > 0 Initial temperature B
Tf 0 < Tf < T0 Final temperature B
TN TN > 0 Number of temperature levels B
Terminate(i, R) {False,True} Return terminate (True) or B

continue (False)
x = random() 0 ≤ x < 1 Return a random value C
α α > 0 The number of neighbors for each A

state: α = M(N − 1)

 
Table 1. Simulated Annealing parameters and symbols. Column A indicates parameters 
related to the size of the mapping/optimization problem. Column B indicates parameters of 
the SA algorithm. Column C indicates an internal variable of the SA. 
 

The general algorithm needs a number of functions to be complete. Most common methods 
are presented in following sections. Implementation effort for most methods is low, and 
trying different combinations requires little effort. Therefore many alternatives should be 
tried. Most of the effort goes to implementing the Cost()  function and finding proper 
optimization parameters. The cost function is the simulation and cost evalution part in 
Figure 1(a). In some cases the Move heuristics can be difficult to implement. 

3.1 Cost function: Cost(S) 
Cost(S) evaluates the cost for any given state S of the optimization space. Here, each point in 
the optimization space defines one mapping for the application. Cost() can be a function of 
any variables. Without loss of generality, this chapter is only concerned about minimizing 
execution time of the application. Other factors such as power and real-time properties can 
be included. For example, 31 2( ) ww wCost S t A P= , where t is the execution time of the 
application, A is the silicon area and P is the power, and 1w , 2w  and 3w  are user-defined 
coefficients. 
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3.2 Annealing schedule: Temp(i) function 
Temp(i) determines the temperature as a function of the iteration number i. Initial 
temperature 0 (0)T Temp= . The final temperature fT  is determined implicitly by Temp() and 
Terminate() functions. Temp() function may also contain internal state, and have access to 
other annealing metrics, such as cost. In those cases Temp() is not a pure function. For 
example, remembering cost history can be used for intelligent annealing schedules. 
In geometric temperature schedules the temperature is multiplied by a factor 0 1q< <  
between each temperature level. It is the most common approach. NT  is the number of 
temperature levels. Define L to be the number of iterations on each temperature level. 
There are 3 common schedules that are defined in following paragraphs. 
Geometric Temperature Schedule 

 0( )
i
LTemp i T q
⎢ ⎥
⎢ ⎥⎣ ⎦=  (1) 

i
L
⎢ ⎥
⎢ ⎥⎣ ⎦

 means rounding down the fraction. The number of mapping iterations is NLT . 

Fractional Temperature Schedule 

 0( )
1

TTemp i
i

=
+

 (2) 

The number of mapping iterations is NT . It is inadvisable to use a fractional schedule 
because it distributes the number of iterations mostly to lower temperatures. Doubling the 
total number of iterations only halves the final temperature. Therefore, covering a wide 

relative temperature range 0 1
f

T
T

>>  is expensive. The geometric schedule avoids this 

problem. For this reason the geometric temperature schedule is the most common choice. 
Koch Temperature Schedule 

 
,
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 (3) 

where 

 , { ( ) | }i L i kstddev Cost S i L k iσ − = − ≤ <  (4) 

Koch temperature schedule (Koch, 1995; Ravindran, 2007) decreases temperature with 
respect to cost standard deviation on each temperature level. Deviation is calculated from 
the L latest iterations. Higher standard deviation, i.e. more chaotic the annealing, leads to 
lower temperature decrease between each level. The number of mapping iterations depends 
on the problem. 
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3.3 Acceptance function: Accept (∆C,T)  
( , )Accept C TΔ  returns True if a worsening move should be accepted, otherwise False. An 

improving move ( 0CΔ < ) is always accepted by the SA algorithm, but this is not a part of 
Accept() behavior (although there are some implementations that explicitly do it). 

CΔ  has an arbitrary range and unit that depends on system parameters and the selected 

cost function. Since C
T
Δ  is a relevant measure in acceptance functions, the temperature 

range needs to be adjusted to the CΔ  range, or vice versa. Following paragraphs define 4 
different acceptance functions. 

3.3.1 Inverse exponential form 

 1( , ) ()
1 exp( )

Accept C T random C
T

Δ = ⇔ <
Δ

+
True  (5) 

It is important to notice that when 0CΔ = , the transition happens at 50% probability. This 
makes SA rather likely to shift between equally good solutions and thus find new points in 
space where a move to a better state is possible. Accepting a worsening move always has a 
probability less than 50%. Despite this, SA is rather liberal in doing random walks even at 
low temperatures. Small increases in cost are allowed even at low temperatures, but 
significant increases in cost are only accepted at high temperatures. 

Note that some implementations write the right part of (5) as 1()
1 exp( )

random C
T

>
−Δ

+
, 

which is probabilistically equivalent. 

3.3.2 Normalized inverse exponential form 

 

0

1( , ) ()
1 exp( )

Accept C T random C
C T

Δ = ⇔ <
Δ

+
True  (6) 

This case has all the properties of the inverse exponential form, but the cost value difference 
is normalized. The idea is that selecting the temperature range 0[ , ]fT T  is easier when it is 
independent of the cost function and the temperature always lies inside the same range 
0 1T< ≤ . Specifically, changing the hardware platform should not make temperature range 
selection harder. Normalization keeps acceptance probabilities in a relevant range even if 

the cost function changes. Figure 4 shows specific probability curves for 
0

r
CC

C
Δ

Δ =  that is 

used inside the exp() function. 

3.3.3 Exponential form 

 ( , ) () exp( )CAccept C T random
T

−Δ
Δ = ⇔ <True  (7) 
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Exponential form is similar to the inverse exponential form, but 0CΔ =  transition happens 
always whereas the inverse exponential form accepts the same move with 50% probability. 
See the reasoning in inverse exponential case. 
 

 
Figure 4. Acceptance probability curves for the normalized inverse exponential function (6) 

with q = 0.95 . The curve represents constant values of r
0

ΔCΔC =
C

. Probability of moving to 

a worse state decreases when the temperature decreases. Moves to slightly worse state have 
higher probability than those with large degradation. 

3.3.4 Normalized exponential form 

 
0

( , ) () exp( )CAccept C T random
C T
−Δ

Δ = ⇔ <True  (8) 

This case has all the properties of the exponential form, but in addition it is implied that 
temperature lies in range 0 1T< ≤ . This is reasoned in the normalized inverse exponential 
case. 

3.4 On effective temperature range 
Annealing starts with a high acceptance rate 0p  for bad moves and it decreases to a very 
low acceptance rate fp . It is important to control the acceptance probability. If inverse 
exponential function (5) is solved with respect to T for a given probability p, we get: 

 1ln( 1)

CT

p

Δ
=

−
  (9) 
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Assuming minimum expected cost change minCΔ  and maximum expected cost change 

maxCΔ , we get the proper temperature range 

 min max
0

0

1 1ln( 1) ln( 1)
f

f

C CT T T

p p

Δ Δ
= < < =

− −
 (10) 

Initial acceptance probability 0p  should be set close to 0.5, i.e. the maximum acceptance rate 
for inverse exponential function, but not too close to save optimization iterations. For 
example, 0 0.45p =  is sufficiently close to 0.5, but saves 58 temperature levels of iterations 
compared to 0 0.49p = , assuming 0.95q = . When 0CΔ =  the acceptance probability is 
always 50%. 
Final acceptance probability fp  can be set large enough so that a worsening move happens 
n times in the final temperature level, where n is a parameter set by the designer. If there are 
L iterations per temperature level, we set /fp n L= . If we set 0.1n = , the final temperature 
level is almost entirely greedy, and a worsening move happens with 10% probability on the 
temperature level for a given minCΔ . The temperature range becomes 

 min max
0

0

1ln( 1) ln( 1)
f

C CT T TL
n p

Δ Δ
= < < =

− −
 (11) 

The derivation of (10) and (11) for normalized inverse exponential, exponential and 
normalized exponential functions is similar. 

3.5 Methods to determine the initial temperature 
The initial temperature 0T  was not defined in annealing schedule functions in Section 3.2. 
As was explained in Section 3.3, the initial temperature is highly coupled with the 
acceptance function. Following paragraphs present common methods for computing the 
initial temperature. Note that final temperature is usually determined implicitly by the 
Terminate() function. 

3.5.1 Heating 
The initial temperature is grown large enough so that the algorithm accepts worsening 
moves with some given probability 0p . This requires simulating a sufficient number of 
moves in the optimization space. Either moves are simulated in the neighborhood of a single 
point, or moves are simulated from several, possibly random, points. The average increase 
in cost avgCΔ  is computed for worsening moves. Given an acceptance function, 0T  is 
computed such that 0 0( , )avgAccept C T pΔ = . The solution is trivial for all presented acceptance 
functions. An example of heating is given in Section 4.2. 

3.5.2 Application and hardware platform analysis 
 
Application and hardware platform analysis can be used to determine the initial 
temperature. Rapid methods in this category do not use simulation to initialize parameters, 
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while slow but more accurate methods use simulation. An example, see (10), (11) and 
Section 4.3. 

3.5.3 Manual tuning 
Parameters can be set by manually testing different parameters. This option is discouraged 
for an automated optimization system where the problem varies significantly. 

3.5.4 Cost change normalization 
In this method the temperature scale is made independent of the cost function values. This 
is either accomplished by (6) or setting 0 0T C=  for (5). By using (6) it is easier to use other 
initial temperature estimation methods. 

3.6 Move function and heuristics: Move(S, T ) 
Move(S, T) function returns a new state based on the application specific heuristics and the 
current state S and temperature T . Move heuristics vary significantly. The simple ones are 
purely random. The complex ones analyze the structure of the application and the 
hardware, and inspect system load. 
It should be noted that given a current state value, randomizing a new state value should 
exclude the current value, i.e. current PE of the moved task in this case, for randomization 
process. For example, in two-processor system, there is a 50% probability of selecting the 
same CPU again, which means that half of the iterations are wasted. Many papers do not 
specify this aspect for random heuristics. 
Common choices and ideas for move heuristics from literature are presented in following 
sections. 

3.6.1 Single: move task to another processor 
Choose a random task and move it to a random processor. 

3.6.2 Multiple: move several tasks to other processors 
Instead of choosing only a single task to move to another processor, several tasks can be 
moved at once. The moved tasks are either mapped to the same processor, or different 
processors. If these tasks are chosen at random and each of their destinations are chosen at 
random, this approach is less likely to find an improving move than just moving a single 
task. This is a consequence of combinatorics as improving moves are a minority group in all 
possible moves. 
If a good heuristics is applied for moving multiple tasks, it is possible to climb up from a 
steep local minimum. A heuristics that only moves a single task is less likely to climb up 
from a steep local minimum. 

3.6.3 Swap: swap processes between processors 
Choose two different random processors, choose a random process on both processors, and 
swap the processes between processors. 

3.7 Heuristic move functions 
A heuristic move uses more information than just knowing the mapping space structure. 
Some application or hardware specific knowledge is used to move or swap tasks more 
efficiently. 



 Simulated Annealing 

 

332 

3.7.1 ECP: Enhanced critical path 
Enhanced Critical Path method (Wild et al., 2003) is a heuristic move for directed acyclic task 
graphs. ECP favors swapping and moving processes that are on the critical path of the graph, 
or near the critical path. Critical path is the path with the largest sum of computation and 
communication costs in the graph. 

3.7.2 Variable grain move 
A variable grain move is a single task move that starts by favoring large execution time 
tasks statistically. Thus, tasks with large execution time are moved more likely than tasks 
with small execution time. The probability distribution is then gradually flattened towards 
equal probability for each task. At low temperatures each task is moved with the same 
probability. 

3.7.3 Topological move 
Assume tasks A and B, where A sends a message to B with a high probability after A has 
been activated. If B is the only task that gets a message from A with a high probability then 
it can be benefitial to favor moving them to the same processor. 
This heuristics could be implemented into Single task move by favoring processors of 
adjacent tasks. The probability distribution for processor selection should be carefully 
balanced to prevent mapping all tasks to the same processor, thus preventing speedup of a 
multiprocessor system. If a task sends messages to more than one task with a high 
probability, this heuristics is at least dubious and needs experimental verification. 

3.7.4 Load balancing move 
This heuristics makes heavily loaded processors less likely to get new tasks, and make 
slightly loaded processes more likely to get new tasks. Each processor's load can be 
determined by a test vector simulation, by counting the number of tasks on each processor, 
or by using more sophisticated load calculations. Each task can be attributed a constant load 
based on test vector simulations, and then each processor's load becomes the sum of loads of 
its tasks. 

3.7.5 Component move 
A task graph may consist from application or system level components each having 
multiple tasks. Separate components are defined by the designer. Instead of mapping single 
tasks, all tasks related to a single component could be mapped. This could be a coarse-grain 
starting point for finer-grain mapping. 

3.8 Other move heuristics 
3.8.1 Hybrid approach 
A hybrid algorithm might use all of the above move functions. For example, combine 
weighted task selection with weighted target PE selection (Sec 3.7.2 + 3.7.3). The move 
function can be selected by random on each iteration, or different move function can be used 
in different optimization phases. 

3.8.2 Compositional approach 
SA can be combined with other algorithms. The move function may use another 
optimization algorithm to make more intelligent moves. For example, the single move 
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heuristics might be adapted to give more weight to the best target processor determined by 
actually simulating each target. 

3.8.3 Optimal subset mapping move 
The move function can optimize a subset of the task graph. Each move will by itself 
determine a locally optimal mapping for some small subset of tasks. The number of 
mapping combinations for a subset of subN  tasks and M processors is subNM  for the brute-
force approach. The number of brute-combinations for a single subset should only be a tiny 
fraction of total number of mappings that are evaluated, that is, a large number of subsets 
should be optimized. A brute-force based approach may yield rapid convergence but the 
final result is somewhat worse than with traditional SA (Orsila et al., 2007). It is suitable for 
initial coarse-grain optimization. 

3.8.4 Move processors from router to router 
In a Network-on-Chip (NoC) system, processors can be moved from router to router to 
optimize communication between system components. 

3.8.5 Task scheduling move 
Scheduling of tasks can be done simultaneously with mapping them. Scheduling means 
determining the priorities of tasks on each processor separately. Priorities for tasks is 
determined by a permutation of all tasks. Task A has higher priority than task B if it is 
located before task B in the permutation. A permutation can be altered by swapping two 
random tasks in the Move function. The order of tasks is only relevant for tasks on the same 
processor. As an optimization for the move heuristics, most permutations need not be 
considered. 

3.9 Termination function: Terminate(i, R) 
Terminate(i, R) returns True when the optimization loop should be terminated. R is the 
number of consecutive rejected moves, maxi  is a user-defined maximum number of 
iterations, and maxR  is a user-defined maximum number of consecutive rejects. Terminate() 
function often uses the T emp() function for determining the current temperature T. 
Following paragraphs present examples and analysis of commonly used termination 
functions from literature: 

3.9.1 Maximum number of iterations 
Annealing is stopped after imax iterations: 

 max( , )Terminate i R i i= ⇔ ≥True  (12) 

This approach is discouraged because annealing success is dependent on actual 
temperatures, rather than iterations. Final temperature and annealing schedule parameters 
can be selected to restrict the maximum number of iterations. 

3.9.2 Temperature threshold 
Annealing is stopped at a specific temperature fT : 
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 ( , ) ( ) fTerminate i R Temp i T= ⇔ <True  (13) 

This approach is discouraged in favor of coupled temperature and rejection threshold 
because there can be easy greedy moves left. 

3.9.3 Cost threshold 
Annealing is stopped when a target cost is achieved: 

 ( , ) ( ) targetTerminate i R Cost S Cost= ⇔ <True  (14) 

For example, if the cost function measures real-time latency, annealing is stopped when a 
solution that satisfies real-time requirements is found. This heuristics should not be used 
alone because if the target cost is not achieved, the algorithm loops forever. 

3.9.4 Rejection threshold 
Annealing is stopped when maxR R≥ : 

 max( , )Terminate i R R R= ⇔ ≥True  (15) 

This approach is discouraged because there is a risk of premature termination. 

3.9.5 Uncoupled temperature and rejection threshold 
Annealing is stopped at a low enough temperature or if no improvement has occured for a 
while: 

 max( , ) ( ) fTerminate i R Temp i T R R= ⇔ < ∨ ≥True  (16) 
This approach is discouraged because there is a risk of premature termination. 

3.9.6 Coupled temperature and rejection threshold 
Annealing is stopped at a low enough temperature only when no improvement has occured 
for a while: 

 max( , ) ( ) fTerminate i R Temp i T R R= ⇔ < ∧ ≥True  (17) 

This approach has the benefit of going through the whole temperature scale, and continue 
optimization after that if there are acceptable moves. This will probably drive the solution 
into a local minimum. 

3.9.7 Hybrid condition 
Any logical combination of conditions 3.9.1 - 3.9.6 is a valid termination condition. 

4. Case studies 
This section summarizes 5 relevant works on the use of SA for task mapping. Task mapping 
problems are not identical but comparable in terms of SA parameterization. Selected SA 
parameterizations are presented to give insight into possible solutions. Table 2 shows move 
heuristics and acceptance functions, and Table 3 shows annealing schedules for the same 
cases. These cases are presented in detail in following sections. 
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Implementation Move Function Acceptance Function
Braun (Sec 4.1) Single Normalized Inverse Exponential
Coroyer (Sec 4.2) Single, Task Scheduling Exponential
Orsila (Sec 4.3) Single Normalized Inverse Exponential
Ravindran (Sec 4.4) Single Exponential
Wild (Sec 4.5) Single, ECP N/A  

Table 2. Simulated Annealing move heuristics and acceptance functions 
Implementation Annealing Schedule T0 End condition L
Braun (Sec 4.1) Geometric, q = 0.90 C0 Tf = 10−200 1
Coroyer (Sec 4.2) Geometric, Fractional Heuristic Heuristic α
Orsila (Sec 4.3) Geometric, q = 0.95 Heuristic Heuristic α
Ravindran (Sec 4.4) Koch T0 = 1 N/A N/A
Wild (Sec 4.5) Geometric, q = N/A N/A Heuristic N/A  

Table 3. Simulated Annealing schedules. See Table 1 for symbols. 

Single move (Sec 3.6.1) and the Geometric annealing scheduling (1) are the most common 
choices. They should be tested in every new experiment. All the cases use a single move so it 
is not covered in each case. Other choices are explicitly documented. 

4.1 Braun case 
(Braun et al., 2001) uses an inverse exponential form (5) as an acceptance function. However, 
the method uses it to actually implement a normalized inverse exponential form (6) by 
setting 0 0T C= . 
A geometric temperature schedule (1) with 0.90q =  and 1L =  is used. 
The termination condition is an uncoupled temperature and rejection threshold (16). 
Optimization is terminated when 20010fT −= or when max 200R =  consecutive solutions are 
identical. The choice for L and fT  values are not explained. If the HW platform or the 
number of tasks were changed, then trivially the number of iterations should be adjusted as 
well. 
The initial mapping used was a random mapping of tasks. 
The paper compares SA to ten other heuristics for independent task mapping problem. SA 
got position 8/11, where 1/11 is the best position received by a genetic algorithm. We believe 
SA was used improperly in this comparison. Based on (11), we think fT  was set too low, 
and L should be much larger than 1. 

4.2 Coroyer case 
(Coroyer & Liu, 1991) do both single and task scheduling (Sec 3.8.5) moves. 
The acceptance function is exponential (7) accompanied with a heating process that puts 
acceptance probabilities to a relevant range. Initial temperature is set high enough so that 

0 0.95p =  of new mappings are accepted. If avgCΔ  is the average increase in cost for 

generating new solutions, the initial temperature is set to 0
0ln
avgC

T
p

−Δ
= . This approach 

depends on the exponential acceptance  function, but it can easily be adopted for other 
acceptance functions. The average increase is determined by simulating a sufficient number 
of moves. See Section 3.5.1. 
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Both fractional (2) and geometric (1) temperature schedules are used with various 
parameters. The number of mapping iterations per temperature level is ( 1)L N Mα= = − . 
The termination condition is an uncoupled temperature and rejection threshold (16). 
Optimization is terminated when 210fT −≤  or when max 5R α=  consecutive solutions are 
identical. Also, a given temperature threshold (13) is used. 
The initial mapping used was a random mapping of tasks. 
They show that SA gives better results than priority-based heuristics for task mapping and 
scheduling, but SA is also much slower. 
Systematic methods are not used to tune parameters. 

4.3 Orsila case 
This case presents methods to derive SA parameters systematically from the problem 
parameters (Orsila et al., 2006). 
 
The annealing schedule is geometric with 0.95q = . The number of iterations per 
temperature level is ( 1)L N Mα= = − . 
 
The initial and final temperature range 0[ , ] (0,1]fT T ⊂  is defined with 

 max
0

min sum

ktT
t

=  (18) 

 min

max
f

sum

tT
kt

=  (19) 

where maxt  and mint  are the maximum and minimum execution time for any task (when it is 
activated) on any processor, min sumt is the sum of execution times for all tasks on the fastest 
processor in the system, max sumt  is the sum of execution times for all tasks on the slowest 
processor in the system, and 1k ≥  is a coefficient. 
The temperature range is tied to a slightly modified version of (6). The factor 0.5 is the only 
difference. 

 

0

1( , ) ()
1 exp( )

0.5

Accept C T random C
C T

Δ = ⇔ <
Δ

+
True  (20) 

The rationale is choosing an initial temperature where the longest single task will have a fair 
transition probability of being moved from one processor to another, and the same should 
hold true for the shortest single task with respect to final temperature. 

Coefficient k has an approximate relation to fp . Substituting min

00.5
C

C
Δ  in place of minCΔ  to 

make (10) compatible with (20) gives 

 min

0
10.5 ln( 1)

f

f

CT T
C

p

Δ
= <

−
 (21) 
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Now, min

00.5
C

C
Δ  is approximated with min

max sum

t
t

 from (19) 

 min

max
1ln( 1)

f

sum
f

tT T
t

p

<
−

∼  (22) 

Now comparing (19) and (22) we get the relation 

 1ln( 1)
f

k
p

−∼  (23) 

Solving (23) with respect to fp  gives us 

 1
1f kp

e +
∼  (24) 

For 1k =  the probability fp  to accept a worsening move on the final temperature level 
given a cost change of order mint  is approximately 27%. For 2k = , probability is 12%. As k 
increases fp  decreases exponentially. Suitable values for k are in range [1, 9] unless L is very 
large (hundreds of thousands or even millions of iterations). The temperature range implied 
by 1k =  is shown in Figure 5. The temperature range is calculated with (18) and (19). (Orsila 
et al., 2007) uses 2k =  and reaches are a local minimum more likely in the end, but it is 
more expensive than 1k = . 
 

 
Figure 5. Averaged speedup with respect to temperature for 300 node graphs with different 
L values. The temperature given with (18)(19) k = 1 is labeled „predicted range“. Notice that 
temperature and the number of iterations increase in different directions. The number of 
mapping iterations increases as the temperature decreases. 

The end condition is the coupled temperature and rejection threshold (17) with maxR α= . 

4.4 Ravindran case 
(Ravindran, 2007) uses an exponential acceptance function (7). 
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A Koch temperature schedule (3) was used with parameters, including initial and final 
temperature, set manually. Termination condition is the temperature threshold (13). 
Systematic methods are not used to tune parameters. However, the Koch temperature 
schedule is mitigating factor since it affects the number of temperature levels and iterations 
based on the problem. 

4.5 Wild case 
(Wild et al., 2003) use a geometric annealing schedule (1) with unknown parameters. 
The termination condition is the uncoupled temperature and rejection threshold (16). 
They show that an ECP move heuristics (Sec 3.7.1) is significantly better than the single 
move with directed acyclic graphs. 
Systematic methods are not used to tune parameters. 

5. Analysis and discussion 
Following sections analyze the effect of iterations per temperature level, saving the number 
of iterations, give best practices for SA, and finally, SA is compared to two greedy 
algorithms and random mapping. 

5.1 Iterations per temperature level 
Figure 6 shows speedup of a 300N =  task directed acyclic graph with respect to iterations 

per temperature level L. Speedup is defined as 1t
t

, where t is the execution time of the 

optimized solution on multiprocessor system and t1 is the execution time on a single 
processor system. 

 
Figure 6. Averaged speedups for 300 node graphs with M=2-8 processing elements and 
different L values (L = 1, 2, 4, ..., 4096) for each processing element set. 
Figure 7 shows the speedup and the number of iterations for each L. These figures show that 
having ( 1) [300,600,900, ,2100]L N Mα≥ = − = …  for the number of processors [2,3, ,8]M = …  
does not yield a significant improvement in performance but optimization time is increased 
heavily. Parameter 1L =  performs very poorly (Orsila et al., 2006). 
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Figure 7. Averaged speedup with respect to mapping evaluations for 300 node graphs with 
different L values. 

5.2 Saving optimization effort 
Choosing initial temperature 0T  and final temperature fT  is crucial for saving optimization 
iterations. With too high an initial temperature the optimization process is practically Monte 
Carlo which means it converges very slowly, and thus, initial iterations are practically 
wasted because bad moves are accepted with too high a probability. This effect is visible in 
Figure 5 at high temperatures, i.e. 210T −> . Also, too low a probability reduces the annealing 
to greedy optimization. Greedy optimization becomes useless after a short time because it 
can not espace local minima. Therefore the final temperature must be set as high as possible 
without sacrificing the greedy part in optimization. This is the rationale for (Orsila et al., 
2006) in Section 4.3. 

5.3 Simulated annealing best practices 
Based on our experiments, we have identified few rules of thumb for using SA to task 
mapping. 
1. Choose the number of iterations per temperature level ( 1)L N Mα≥ = − , where N is the 

number of tasks and M  is the number of PEs. Thus, α  is the number of neighbouring 
mapping solutions because each of the N tasks could be relocated into at most 1M −   
alternatives. 

2. Use geometric temperature schedule with 0.90 0.98q≤ ≤ . This is the most common 
choice. 

3. Device a systematic method for choosing the initial and final temperatures. As an 
example, see (10). 

4. Use coupled temperature and rejection threshold as the end condition (Section 3.9.6) 
with maxR L=  (the number of iterations per temperature level) 

5. If in doubt, use the single task move (Sec 3.6.1). This is the most common choice. Other 
move heuristics can be very useful depending on the system. For example, ECP 
heuristics (Sec 3.7.1) is efficient for directed acyclic task graphs. 

6. Use normalized inverse exponential function (6) as the acceptance function. This 
implies that temperature is always in range (0, 1]. This also means that convergence of 
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separate annealing problems can be compared with each other, and thus, effective 
annealing temperatures become more apparent through experiments. 

7. Optimize the same problem many times. On each optimization run start with the best 
known solution so far. As simulated annealing is a probabilistic algorithm it can happen 
that the algorithm drives itself to a bad region in the optimization space. Running the 
algorithm several times reduces this risk. 

8. If in doubt of any of the parameters, find them experimentally 
9. Record the iteration number when the best solution was reached. If the termination 

iteration number is much higher than the best solution iteration, maybe the annealing 
can be made more efficient without sacrificing reliability. 

5.4 Comparing SA to greedy algorithms 
Figure 8 compares SA to two greedy algorithms and Random Mapping (Orsila et al., 2007). 
A 300 task application is distributed onto 8 processors to optimize execution time. Group 
Migration (GM) is a deterministic greedy algorithm that converges slowly. GM needs many 
iterations to achieve any speedup, but once that occurs, the speedup increases very rapidly. 
Optimal Subset Mapping (OSM) is a stochastic greedy algorithm that converges very 
rapidly. It reaches almost the maximum speedup level with very limited number of 
iterations. SA convergence speed is between GM and OSM but in the end it reaches a better 
solution. Random mapping saturates quickly and further iterations are unable to provide 
any speedup. Note that SA follows the random mapping line initially as it resembles a 
Monte Carlo process at high temperatures. Random mapping is the base reference for any 
mapping algorithm since any intelligent algorithm should do better than just random. 
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Figure 8. SA convergence speed compared to GM, OSM and Random Mapping algorithms 
for mapping 300 tasks to 8 processors. SA+AT is a Simulated Annealing algorithm 
presented in Section 4.3. GM and OSM are greedy heuristics. 
SA yields 8% better result than GM, 12% better than OSM, and 107% better than random 
mapping. SA is better than the greedy algorithms because it can espace local minima. 
However, when measuring the best speedup divided with the number of iterations needed  
to achieve the best result for each algorithm the relative order is different. We normalize the 
results so that random mapping gets value 1.00. SA gets 2.58, OSM 6.11 and GM 1.21. That 
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is, OSM is 2.4 times as efficient as SA is in terms of speedup divided by iterations. SA is 2.1 
times as efficient as GM. Thus, we note that greedy local search methods can converge much 
faster than SA. 

6. Open research challenges 
This section identifies some open research challenges related to using SA for task mapping. 
The challenges are in order of importance. 
What is the optimal annealing schedule for task mapping given a hardware,  application 
model and a trade-off between solution quality and speed? The hardware and application 
model determine all possible cost changes in the system, and this is tied to probabilistic SA 
transitions. Not all temperatures are equally useful, so iterations can be saved by not 
annealing on irrelevant temperatures. For example, it is not benefitial to use lots of iterations 
at high temperatures because the process is essentially a Monte Carlo process which 
converges very slowly. 
What are the best move heuristics for each type of application and hardware model? For 
example, ECP (Sec 3.7.1) is useful for application models that have the concept of critical 
path. 
What is the optimal transition probability for 0CΔ = ? The probability is 0.5 in (5) and 1.0 in 
(7), but it can be selected arbitrarily. This probability determines the tendency at which SA 
travels equally good solutions in the neighborhood. Is there advantage to using either (5) or 
(7) due to this factor? 
Can SA be made faster or better by first doing coarse-grain optimization on the application 
level and then continue with finer-grain optimization? Current optimization strategies are 
concerned with sequential small changes rather than employ a top-level strategy. 
What are the relevant test cases for comparing SA to other algorithms, or other SA 
implementations? (Barr et al., 1995) have laid out good rules for comparing heuristics. 
Excluding optimization programs, is there a problem where running SA as the main loop of 
the program would be benefitial? Each Cost() call would go one or several steps further in 
the program. In other words, is SA a feasible for run-time optimization rather than being 
used as an offline optimizer? Even small problems can take significant amount of iterations 
to get parameters correctly. The application must also tolerate slowdowns. 

7. Conclusions 
This chapter presents an overview of using SA for mapping application tasks to 
multiprocessor system. We analyze the different function variants needed in SA. Many 
choices are suboptimal with respect to iteration count or discouraged due to poor 
optimization results. We find that SA is a well performing algorithm if used properly, but in 
practice it is too often used badly. Hence, we present best practices for some of those and 
review the most relevant open research challenges. 
For best practices we recommend following. Iterations per temperature level should depend 
on the problem size. Systematic methods should be used for the temperature range. 
Normalized inverse exponential function should be used. 
For open research challenges we prioritize following. Find an optimal annealing 
schedule, move function and transition probabilities for each type of common task 
mapping problems. For example, it is possible to do critical path analysis for some task 
mapping problems. 
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1. Introduction  
Resolving the structure of a macromolecule such as a protein or synthetic polymer is 
important to predict its properties, especially in the case of proteins whose structure 
determines their function in a living cell. With crystallography and nuclear magnetic 
resonance (NMR) techniques, the protein structure may be solved at a high atomic 
resolution. However, these high resolution methods apply only in rather specific conditions, 
for low molecular weight proteins in NMR and when a crystal may be formed in 
crystallography. In order to obtain structural information for systems that do not satisfy the 
requirements above, one has to resort to methods such as X-ray and neutron small angle 
scattering (SAS), in which macromolecules in solution can yield only low-resolution 
information (from 1–100 nm), but are applicable to a broader range of conditions and 
particle sizes (Feigin and Svergun (1987)).  
In this chapter we shall concentrate on small angle X-ray scattering (SAXS), and elaborate on 
the theory and possible applications for proteins and conjugated polymers. In order to 
obtain low resolution models of such complex systems, several assumptions must be made. 
For instance, the system needs to be monodisperse, diluted and with particles possessing an 
electron density that is considerably different from the density of the medium. Of particular 
relevance will be the use of global optimization techniques, such as simulated annealing, for 
proteins. The aim is to find the structure of a monodisperse diluted system of protein 
solution from one-dimensional SAXS data (Glatter and Kratky (1982)). The Chapter is 
organized as follows: In Section 2 the main principles of X-ray scattering are introduced, 
including scattering of X-ray by free electrons and a pair of electrons, in addition to 
scattering of X-ray by atoms and a group of n atoms. Section 3 deals with analysis of SAXS 
curves, whereas the method of simulated annealing is discussed in Section 4. In Section 5 the 
results of simulated annealing in two electron densities systems are discussed. Concluding 
remarks close the chapter in Section 6. 

2. Principles of small angle X-ray scattering 
2.1 Scattering of X-ray by free electrons 
The use of X-rays in structural characterization of materials explores essentially their 
interaction with matter through the electrons of atoms and molecules. The electrons are 
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sensitive to the sinusoidal electric and magnetic fields of the impinging X-rays, which for a 
monochromatic electromagnetic wave may be represented by periodic functions of the type: 

0 cos 2E E tπω=  

0 cos 2H H tπω=  
(1) 

where 0E  and E are the incident and scattered electric fields, respectively, 0H  and H are the 
incident and scattered magnetic fields, respectively, and ω  is the radiation frequency. 
The direction of X-ray propagation can be given by the Poynting vector: ( / 4 )P c E Hπ= × . 
Let us consider an electron located at the origin of a system of coordinates xyz shown in 
figure 1, on which a parallel beam of polarized and monochromatic X-rays impinges. Under 
the electric field of the incident wave the electron suffers a force: 

 0 cos 2F eE tπω=  (2) 

 
Figure 1. Schematic view of the X-ray scattering by free electrons. An electron is located at 
the origin O on which a parallel beam of polarized, monochromatic X-rays is incident. 

The electron is then accelerated according to: 

 0 cos 2
eEFa t

m m
πω= =  (3) 

The electron thus accelerated becomes a spherical source of electromagnetic waves of the 
same frequency of the incident radiation (elastic scattering). So, an electron will oscillate 
around its average position under this electric field. The electron scattering was analyzed by 
J. J. Thomson, who derived the field at P in figure 1:   
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2

0

sin
4
eaE

R c
φ

π ε
=  (4) 

Substituting equation 3 in equation 4:  

 
2

0
2

0

sincos 2
4

e E
E wt

m R c
φπ

π ε
=  (5) 

where φ  is the angle between the scattered beam direction and the electric field of the 
incident wave, 0ε  is the vacuum permittivity, R is the distance between the electron and the 
observation point, c is the speed of light, m is the electron mass and e  is the electron charge.  

The expression 
2

2
04

e
c mπε

 has the dimension of length, being the scattering length in the 

classical electromagnetism, referred to as electron radius ( 152.82.10 m− ). To simplify the 
notation the amplitude of the scattered wave by a free electron will henceforth be 
designated as eA . 

 
2

2
04e

eA
c mπε

=  (6) 

For a non-polarized incident beam, the electric field may be decomposed into two mutually 
perpendicular components. Figure 2 depicts a parallel, non-polarized beam propagating in 
the Ox direction, impinging on an electron located at O. To determine the scattered electric 
field in the direction OP, the incident field can be decomposed in two components: a parallel 
one to the plane OXP, E//, and a perpendicular component, E⊥.  

 
Figure 2. Schematic view of an electron located at the origin O on which a parallel, 
monochromatic and non-polarized X-ray beam is incident in the Ox direction. The incident 
field has a component parallel to the plane OXP, E//, and another perpendicular to this 
plane, E⊥.    
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Under the action of those fields the electron acquires acceleration with parallel and 
perpendicular components given by /a eE m⊥ ⊥=  and // // /a eE m= . Using these 
expressions in equation 5, one obtains the electric field of the scattered wave:   

2

2
0

'
4

eA Ee EE
Rc m Rπε

⊥⊥
⊥ = =  

2
// //

// 2
0

cos 2 cos 2
'

4
ee E A E

E
Rc m R

θ θ
πε

= =  
(7) 

The intensity Io of the incident beam can also be decomposed into a perpendicular and a 
parallel component, proportional to 2E⊥  and E//2, respectively:  

 2 2 0
// 2

I
E E⊥= ∝  (8) 

The total intensity scattered at point P is: 

2 2
//(2 ) [ ' ' ]I E Eθ ⊥= +  

22 2
0
2 2

0

(1 cos 2 )(2 )
4 2

I eI
R c m

θθ
πε

⎛ ⎞ +
= ⎜ ⎟

⎝ ⎠
 

2
20

2

(1 cos 2 )(2 ) ( )
2e

I
I A

R
θθ +⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

(9) 

Since 0I and R can be taken as constant during the measurement, the scattered intensity of 
the electron is: 

 
2

2 (1 cos 2 )( , 2 )
2e eI R A θθ +

=  (10) 

From equation 9 and 6 we infer that only the electrons contribute to the scattered intensity, 
which decreases with the square of the particle mass. Therefore, even though the nuclei also 
suffer the action of the impinging electric field, the effect is negligible because of the heavy 
mass of a nucleus (mass of the proton = 1837 times the mass of the electron). The term (1 + 
cos2 2θ)/2 is the polarization factor, and indicates that the scattered wave is partially 
polarized even for a non-polarized incident beam. In SAXS experiments, the maximum 
scattering angle is usually around 5 degrees and (1 + cos2 2θ)/2 is practically 1.  

2.2 Scattering of X-ray by a pair of electrons, interference 
To introduce the interference concept, we consider two electrons in a particle spaced by a 
distance r, immersed in a parallel monochromatic X-rays beam, as illustrated in figure 3a. 
The scattered waves will be coherent. Incoherent scattering may also occur but it can be 
neglected at small angles. 
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Figure 3. Schematic view for X-ray scattering by a pair of electrons. a. An electron is at the 
origin and the other is at a distance r . There is a difference (AB + BC) in the optical paths 
between the two scattered beams, leading to a phase difference. b. Geometric relationships 
among the vectors 1B , 0B , and q .  

The phase difference due to the distinct optical paths for the electrons at the origin and at a 
distance r  is  

 
2 lπϕ

λ
Δ

Δ =  (11) 

Since the difference in optical path  A   l B BCΔ = + , the phase difference is  

 
2 (A   )B BCπϕ

λ
+

Δ =  (12) 

The directions of the incident and scattered beams are given by 0B and 1B  unit vectors 
respectively.  

 0AB r B= ⋅  and  1BC r B= − ⋅   (13) 

The phase difference is: 

 1 02 ( )r B Bπ
ϕ

λ
− −

Δ =  (14) 

Where: 

 1 02 ( )B B
q

π
λ

−
=  (15) 

Then: 
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 cos 2r q rqϕ θΔ = − ⋅ = −  (16) 

where 2θ is the angle between r  and q .  
Only the product of the components r q⋅  is relevant to ϕΔ . It might now be possible to 
obtain the resulting amplitude by summing up all secondary waves, considering the 
scattering phase factor ie ϕΔ  among them. Due to the enormous number of electrons in a 
macromolecule, it is convenient to introduce the electron density ( )rρ . The scattering 
amplitude will be then given by:   

 ( ) ( ) i
eA q r A e ϕρ Δ= ∫  (17) 

Substituting Equation 16 into 17 

 ( ) ( ) ir q
eA q A r e dVρ − ⋅= ∫  (18) 

Figure 3b displays the geometric relationships among the vectors 12 Bπ
λ

, 02 Bπ
λ

, and q . It 

can be seen easily that q  is perpendicular to the bisector of the angle between 12 Bπ
λ

 and  

02 Bπ
λ

, with a module equal to: 

 
4 sinq π θ

λ
=  (19) 

2.3 Reciprocity law 
Any scattering process is characterized by a reciprocity law that gives an inverse 
relationship between particle size and scattering angle. Let us consider in figure 4 the case of 
two spheres with constant electron density ( )rρ and radius R1 and R2 under the same X-ray 

beam; dI is the scattered intensity for an element of volume dV for two different points from 
each sphere. There is a difference in optical path to the two spheres. If 2θ is zero, so is q, and 

ϕΔ  for all the volume elements is null. The same path difference of one λ  occurs at a 
higher angle for the smaller sphere. The scattering curves for the two spheres clearly reveal 
a reciprocity relationship between the real and the scattering spaces, referred to as reciprocal 
space.   

2.4 The phase problem 
The scattering intensity ( )I q is the measurable quantity, proportional to the square of A(q):   

 *( ) ( ) ( )I q A q A q∝ ⋅  (20) 

where *( )A q it is the complex conjugate of ( )A q . 
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Figure 4. Reciprocity law. Two spheres with constant electron density )(rρ and radius R1 
and R2 under the same X-ray beam.  

According to the properties of Fourier transforms, the inverse transform of ( )A q , equation 

18, allows for the calculation of ( )rρ , which is a real, positive quantity. However, to 

obtain ( )rρ  the phase and module of the wave vector ( )A q  are required: 

 ( ) ( ) iA q A q e φ=  (21) 

The intensity will be then: 

 ( ) 2 22( ) ( ) ( ) ( )i iI q A q A q e e A qφ φ−∝ = =  (22) 

Hence, as from the measurement only ( )I q is obtained  the knowledge of the phase being 
lost.  

2.5 Scattering of X-rays by atoms 
Equation 18 can be calculated for any atom, provided that ( )rρ  is known, which is usually 

obtained with quantum methods assuming spherical symmetry. For q  = 0 the integral in 
equation 18 gives the total number of electrons of a neutral atom, i.e., its atomic number Z. 
As q  grows, the phase differences lead to a progressive decrease in ( )A q . Curves of the 
type shown in figure 5 are obtained for carbon and oxygen. 
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Figure 5. Schematic representation of the atomic scattering factor for carbon (blue line) and 
oxygen (red line). 
The atomic scattering factor is defined as the ratio between the scattered amplitude for the 
atom and the scattered amplitude for one electron.  

 
( )

( ) atom

e

A q
f q

A
=  (23) 

2.6 Scattering by a group of n atoms 
With the atomic scattering factors, equation 18 can be rewritten considering the position 
vector jr of each atom, and making a sum over all the n atoms, each one with a scattering 
factor fj: 

 
1

( )
n

j
j

j

iq rA q f e
=

− ⋅= ∑  (24) 

The scattered intensity of the particle can be obtained if the atomic coordinates of the atoms 
are known. For n atoms with scattering factors ( )j jf q f=  and coordinates jr  for the center 
of each particle: 

 
1 1

( )
n n

jk
j k

j k

iq rI q f f e
= =

− ⋅= ∑∑  (25) 

2.7 Inverse Fourier transform of the intensity  
Because of the Phase Problem, it is not possible to invert ( )A q  directly to obtain ( )rρ . 
Patterson (1935) proposed a method for calculating the Fourier transform taking as 
coefficients the intensities of scattered beams, obtained from the square of the amplitude in 
equation 18:   
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 1 2
1 2 1 2

( r r )( ) ( ) ( ) iqI q dV dV r r eρ ρ − −= ∫ ∫  (26) 

Integration of equation (26) may be performed in two steps: first integrating over all the 
pairs of points of equal distance in the particle and then integrating on all relative distances 
in the particle. These steps are summarized as follows:   
1st step: Mathematically it corresponds to calculating the auto-correlation function ( )rρ ,  
making 2 1r r r= −  constant. 

 1 2( ) ( ) ( )r r r dVρ ρ ρ=  (27) 

This function, known as Patterson function, is defined on a new space C(r) (correlation 
space) in which each r corresponds to a distance 2 1( )r r−  taken over the whole scattered 
object and whose value is the average of the products between electron densities in points 

1r and 2r . 
2nd  step: It consists in integrating the remaining function in the space C(r) to obtain ( )I q :   

 2( ) ( ) iq rI q dV r eρ − ⋅= ∫  (28) 

This integral depends only on the relative distances between the elements in the volume and 
on the product of the corresponding electron densities. 
 For a concentrated system, the scattering intensity is ( ) ( ). ( )I q I q S q∗ = , where ( )I q  is the 
form factor, and should be related to intra-particles distances, while ( )S q  is the structure 
factor, associated with inter-particles correlations. For diluted systems, ( )S q can be taken as 
1, and only the form factor contributes to the scattering curve (Craievich (2005)). In this 
chapter we will discuss only diluted systems.  
According to equation 28, the distribution of the scattered intensities in reciprocal space is a 
function of electron density distribution in the scattering particle through its auto-
correlation function. It can be obtained directly from the scattered intensities by calculating 
the inverse Fourier transform:  

 2 3 *1
2( ) ( ) ( ) iq rr I q dV eπρ − ⋅= ∫  (29) 

where *dV is the volume element of the reciprocal space.   
An important property of the auto-correlation function is the existence of an inversion 
center, because 1 2( ) ( )r rρ ρ  is equal 2 1( ) ( )r rρ ρ , resulting in the same value for r  as for - r , 
regardless of whether the scattering particle has an inversion center. Furthermore, there is a 
reciprocity relationship between equations 28 and 29, because their values just depend on 
the product q r⋅ . Therefore, an increase in r leads to a smaller q .   

2.8 Isotropic and diluted systems  
A consequence of the reciprocity relationships between the direct and reciprocal spaces is 
that large particles will lead to smaller intervals for 2θ in which scattering is observed. For 
analyzing SAXS curves we need to adopt simplifying restrictions:   
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(a) The system is statistically isotropic either due to the particle scattering form, or to its 
spatial distribution and even random movement in the medium. 
(b) There is no long range order among the particles, i.e., they should be sufficiently apart.   
With restriction (a), 2 ( )rρ is centro-symmetric depending only on the module of r . This 

may not be true in the real space, and we can substitute the phase factor iq re− ⋅ by its average 
value taken around r , that is, applying Debye’s formula: 

 
siniq r qre

qr
− ⋅ =  (30) 

This allows us to rewrite equations 25 and 29: 

 
1 1

sin
( )

n n
ij

i j
i j ij

qr
I q f f

qr= =

= ∑∑  (31) 

 2 sin( ) ( ) qrI q dV r
qr

ρ= ∫  (32) 

Again, the expression of reciprocity between r and q is apparent in Debye’s formula. If the 
product qr is kept constant, an increase in r  causes a decrease in q.  
Because sin qr is a periodic function, the denominator qr is a dampening factor, generating 
smaller maxima. The first zero should happen for 2qr π= . We can thus verify, recalling 

that (4 sin ) /q π θ λ= , that θ ≈ 2.5o for r = 50 Å and λ = 1.54 Å. Therefore, the useful interval 
for measuring the scattering curve is approximately from 0 to 2.5o.   
The consequence of the second restriction is that at large r the electron densities become 
independent, and might be replaced by the average ρ . The auto-correlation function 

must tend towards a constant value 
2V ρ , while at the origin 2 (0)ρ  takes the value 2V ρ   

(the maximum, of course). So, in space C(r) relevant structural information will be only in 
the area such that ρ is significantly different from its final constant value. For that reason the 
auto-correlation function is redefined to η ρ ρ= − , expressing in fact only the 
fluctuations of electron density responsible for scattering: 

 2 2( ) ( ( ) ) ( )r r V rη ρ ρ γ= − =  (33) 

With a convenient change of notation, the correlation function ( )rγ  is introduced, which is 
associated with the average of the density fluctuations for two electrons separated by r, 
where r = ⎢r1 – r2 ⎢. 

 1 2( ) ( ) ( )r r rγ η η=  (34) 

The fluctuations in electron density, relative to the medium that contains the scattering 
centers, can be negative or positive. For instance, pores in a material lead to a negative η 
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fluctuation. However γ(r) will be positive as it is given (cf. eq. 33) by 2 ( )rη , with 2(0)γ η=  
and 0γ →  for large r. Adding γ(r) in eq. 32, with integration limits from 0 to ∞ and 
changing the integration parameter to dr, the intensity is:   

 2

0

sin( ) 4 ( ) qrI q V r dr r
qr

π γ
∞

= ∫  (35) 

For q = 0  

 ∫
∞

=
0

2 )(4)0( rdrrVI γπ  (36) 

γ(r)  is found from the inverse Fourier transform of eq. 35: 

 2
2

0

1 sin( ) ( )
2

qrV r q dqI q
qr

γ
π

∞

= ∫  (37) 

For r = 0 

 2 2
2

0

1(0) ( )
2

V q dqI q Vγ η
π

∞

= =∫  (38) 

It is not possible to measure (0)I  in equation 36 because it coincides with the incident beam 
direction. However, it can be obtained by extrapolation of the curve I(q), thus allowing at 
least an estimate of the number of electrons in the volume of the particle.   
From equation 38 the integral of the intensity in the reciprocal space is constant. Even if a 
given particle has its form altered, but remaining as a whole intact, the integral is constant, 

equal to 2Vη , though the diffraction pattern or scattering may be changed. This constant is 
the so-called “invariant”, given by: 

 2

0

( )Q q dqI q
∞

= ∫  (39) 

The restricting condition of isotropic systems allows one to obtain averages that are treated 
as scalar quantities in the distribution of the autocorrelation function in the C(r) space. 

2.9 Redefinition of correlation function  
Because the square electron density difference is always positive and constant, it is 
convenient to separate )(rγ , defined in equation 33, in the form 

 ( )2

0( ) ( )r rγ ρ γ= Δ  (40) 

Where 0 ( )rγ is a new correlation function, just for the geometry of the particle, with 

0 (0) 1γ =  and 0 max( ) 0r Dγ ≥ = (where maxD is the maximum intra-particle distance). 0 ( )rγ  
is called “characteristic function” and has a more intuitive meaning. 
Thus, it is convenient to rewrite equations 35, 36, 37, 38 and 39: 



 Simulated Annealing 

 

354 

 ( )2 2
0

0

sin( ) 4 ( )
D qrI q V r dr r

qr
ρ π γ= Δ ∫  (41) 

 ( ) ( )2 22 2
0

0

(0) 4 ( )
D

I V r dr r Vρ π γ ρ= Δ ≈ Δ∫  (42) 

 
( )

2
0 22

0

1 sin( ) ( )
2

qrV r q dqI q
qr

γ
π ρ

∞

=
Δ

∫  (43) 

 
( )

2
0 22

0

1(0) ( )
2

V q dqI qγ
π ρ

∞

=
Δ

∫  (44) 

 ( )22 2

0

( ) 2Q q dqI q V π ρ
∞

= = Δ∫  (45) 

2.10 Isotropic, diluted and monodisperse systems  
Let us assume that the system of interest is a diluted solution of identical particles 
(monodisperse) with constant electron density ρ, embedded in a medium of constant ρ0 

(solvent). Thus only 0( )pρ ρΔ = −  is relevant for scattering. The condition of diluted system 
guarantees that each particle makes independent contributions to the scattering intensity, so 
that only one single particle needs to be considered.    
A more complete data analysis for the determination of the particle’s geometry can still be 
made through the calculation, starting from the experimental data, of the pair distribution 
function p(r), where 2

0( ) 4 ( )p r r rπ γ= . Thus, equation 41 can be rewritten as 

 ( )2

0

sin( ) ( )
D qrI q V p r dr

qr
ρ= Δ ∫  (46) 

Therefore, p(r) can be obtained from the inverse Fourier transform of I(q). The p(r) function 
is zero for the maximum particle dimension Dmax. It should be reminded that we assumed 
restrictive conditions such that “the solution needs to be monodisperse and sufficiently 
diluted to avoid inter-particle effects”. It is also worth noting that a good contrast in electron 
density is needed between the solute and the solvent. The distance distribution function p(r) 
contains the same information as the scattering intensity I(q), but the real space 
representation is more intuitive. Furthermore, information about particle shape can often be 
deduced by straightforward visual inspection of p(r). Spherical particles have a Gaussian 
p(r) with maximum at Dmax/2. Departures from a Gaussian curve are indicative of more 
anisotropic particles in solution. 

3. Analysis of SAXS curves 
To analyze the SAXS curve it is convenient to distinguish three regions related to different 
distances in real space. With this procedure, it is possible to calculate the radius of gyration, 
the relation I(0)/Q and the surface/volume ratio. 
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3.1 Small q in SAXS curves, determination of the radius of gyration  
Assuming the ideal case of non-interacting, dilute spherical particles and isotropic solutions, 
A. Guinier showed for 0q →  that the intensity curve can be described by an exponential 
function:   

 
2 2

3( ) (0)
gq R

I q I e
−

=  (47) 
Where Rg is the radius of gyration corresponding to the quadratic average distance from the 
electron to the center of gravity of the electron density, analogously to the radius of inertia 
in mechanics. Similar approximations, not shown here, can be considered for rod-like and 
flat particles. For ideal monodisperse systems, the Guinier plot 2ln ( )I q q×  should be a 
straight line whose intercept gives I (0) and the slope yields the radius of gyration Rg. One 
should, however, always bear in mind that the Guinier approximation is valid for very small 
angles only, namely in the range q < 1.3/ Rg, and fitting a straight line beyond this range is 
unphysical.  It is also possible to obtain Rg as the normalized second moment of the pair 
distribution function p(r) of the particle (Svergun & Koch (2003)). 

3.2 Central slope of the SAXS curve, determination of the volume  
Dividing equation 42 by 45, the term corresponding to the absolute intensity is canceled out 
and:   

 
2

(0)
2

I V
Q π

=  (48) 

Because the data normally appear in arbitrary units, I(0) and Q are given in a relative scale. 
Hence, (0) /I Q  is also valid in an arbitrary scale. To obtain V the data are extrapolated 
to (0)I using the Guinier plot. 

3.3 Final slope of the SAXS curve, determination of the surface/volume ration  
An analysis of the slope in the final region of the SAXS curve should contain information on 
finer aspects of the particle’s structure, expressed by the behavior of  0 ( )rγ  at smaller rs.  
Porod showed that a relationship exists between this part of the curve and the fourth power 
of q given by: 

 ( ) ( )2 2

4 4

8 2( )I q V S
q q
π πρ ρ→ Δ = Δ  (49) 

The  asymptotic value for the curve I(q) x q4 is expected to be proportional to the total 
surface of the particle: 

 4lim ( )q

S q I q
V Q

π
→∞=  (50) 

The data at large angles are assumed to follow a linear plot in 4 ( )q I q  against 4q  
coordinates. Nevertheless, if there are heterogeneities in electron densities in the scattering 
particles a relation of the form 4 4( ) ( )q I q Bq I q A≈ +  may appear. By subtracting the constant 
B (Porod constant) from I (q), the scattering corresponds to that of a homogeneous body.  
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In summary, three characteristic parameters of the particle are obtained, viz. radius of 
gyration, volume and surface, which can be used to design a possible low resolution model 
for the scattering particle.   

4. Simulated annealing 
The first paper suggesting the use of simulated annealing for minimization of a function 
with no obvious physical correspondence was the Kirkpatrick procedure for minimizing 
printed circuit board line crosses (Kirkpatrick et al., (1983)). This paper constructs a non 
physical function based on crossing circuits and chooses a random line to uncross, as the 
equivalent of a physical atom.  The situation in this case is quite different from the true 
simulated annealing, because the function used has no physical correspondence, but the 
ideas work in the same way. The simulated annealing algorithm in this case may be 
described by the following macro procedure (Svergun (1999)):  
Start from a random configuration 0X  at a high temperature 0T . In this case 0T  may be a 
function of 0X . 
Select an atom at random, randomly change its phase (configuration 'X ), and compute 

( ') ( )f X f XΔ = − . 
If 0Δ < , move to 'X  
Else if exp( / )T random−Δ <  
move to 'X , else continue on X . 
Hold T constant for 100 N reconfigurations or 10 N successful reconfigurations, whichever 
comes first, then cool the system ( ' 0.9T T= ) 
Continue cooling until no improvement in ( )f X  is observed. 
As the temperature decreases, these modifications become less random and sharper because 
the system is freezing. Note that only one dummy atom is changed per move so that only a 
single summand in equation must be updated to calculate the partial amplitudes. This 
summand is the most time consuming operation. It is exactly this acceleration that makes it 
possible to use simulated annealing, because it causes the evaluation of f(x) to be N times 
faster. 

4.1 Ab initio reconstruction based on simulated annealing  
The reconstruction of a three-dimensional model of an object from its one-dimensional 
scattering pattern is not easy. In addition, its uniqueness is not guaranteed, as different 
models may yield the same SAS curve with nearly the same accuracy (Vladimir et al., 
(2003)). To simplify the description of the low-resolution models that can legitimately be 
obtained, data interpretation is often performed in terms of homogeneous bodies (the 
influence of internal inhomogeneities for single component particles can largely be 
eliminated by subtracting the Porod constant). In the past, shape modeling was done by 
trial-and-error using Debye’s formula, computing scattering patterns from different shapes 
and comparing them with the experimental data. The models were either three-parameter 
geometrical bodies like prisms, triaxial ellipsoids, elliptical or hollow circular cylinders, etc, 
or shapes built from assemblies of regularly packed spheres (beads). The first ab initio shape 
determination method was proposed by Stuhrmann (1970). The particle shape was 
represented by an angular envelope function r = F(ω) describing the particle boundary in 
spherical coordinates (r, ω). The use of the angular envelope function was, however, limited 
to relatively simple shapes (in particular, without holes inside the particle). 
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A more comprehensive description is achieved with the bead methods (Chacon et al., (1998), 
Svergun (1999)).  Such an approach uses the tremendous power of modern computers, and 
is based on the same idea used in the past for the trial and error with Debye’s formula. 
Initially a spherical region with diameter maxD is filled with N subunits (spheres) with 
hexagonal packing. Each of these subunits belongs either to the particle (index=1) or to the 
solvent (index=0). The geometric form composed by these subunits can be viewed as a 
vector with N components, and each of the components is either a zero or one. This model is 
known as the dummy atom model (DAM).  The idea is to randomly modify this model by a 
Monte-Carlo procedure for obtaining a chain, i.e., a geometric configuration, for which the 
simulated scattering curve fits the experimental data. This approach was implemented on 
Dammin program, which works as follows: A model of a K-phase particle 1K ≥  is 
generated and its scattering is calculated. The next step is to define a spherical shape 
enclosing the particle. This corresponds to the step cited above, in which a sphere with 
diameter maxD  is defined and filled up with N dummy spheres ( 3

0( / )N R r≈ , where R is 
sphere radius and 0r  is the dummy atom radius.   
Each dummy atom is assigned an index jX  indicating the phase to which it belongs ( jX  
ranges from 0 (solvent) to K). Given the fixed atomic positions, the shape and structure of 
the dummy atom model are completely described by a phase assignment vector X 
(configuration).  
The dummy atoms of the k-th phase are assumed to have contrast kρΔ , and the scattering 
intensity from the Dummy Atom Model (DAM) is: 

 
1

( ) ( )
K

k k
k

I q A qρ
= Ω

⎡ ⎤= Δ⎢ ⎥⎣ ⎦
∑  (51) 

where ( )kA q  is the scattering amplitude from the volume occupied by the kth phase. The 
scattering amplitude in the formula above can be given in terms of spherical harmonic 
functions ( )lmY Ω as: 

 
1

( )

0 1
( ) ( ) ( )k

k lm lm
l m

A q A q Y
∞

= =−

= Ω∑ ∑  (52) 

The terms ( ) ( )k
lmA s are obtained by mathematical manipulation, i.e., rearrangement of terms, 

given by: 

 ( ) *
1

1
( ) 2 / ( ) ( ) ( )

kN
k l

lm j lm j
j

A q i f q j qr Yπ ω
=

= ∑  (53) 

The intensity is (Stuhrmann (1970b)): 

 
1

2 ( ) 2 ( ) ( ) *

0 1 1
( ) 2 [ ( )] 2 ( ) [ ( )]

K
k k n

k lm k lm n lm
l m k n k

I q A q A q A qπ ρ ρ ρ
∞

= =− = >

⎡ ⎤= Δ + Δ Δ⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑  (54) 

where the sum runs over the dummy atoms of the kth phase, rj, vj are their polar coordinates, 
jl(x) is the spherical Bessel function, and ( )f q is the scattering from a single atom (form 
factor). 
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The looseness criterion is applied to a set of 1M ≥ experimental curves ( )
exp ( ), 1,...,iI q i M= , 

and the procedure in the Dammin program tries to minimize the discrepancy: 

 
2( )

2 ( )

1 1

( )
exp

1 [( ( ) ( )) / ( )]
N iM

i
j j j

i j

iI q I q q
M

χ σ
= =

= −∑ ∑  (55) 

In the formula above, ( )N i  is the number of points of the i-th curve and ( )sσ denotes the 
experimental errors. For an adequate description of a structure the number of dummy atoms 
must, however, be as large as the number of true atoms ( 310N ≈ ). On the other hand, if the 
resolution is low, the uniqueness of such a model cannot be meaningfully discussed. 
The program assumes an hexagonal packing 12cN = , except for the border atoms. The 

connectivity is defined by an exponential form 0.5 0.5( ) 1 ( ) 1 [ ]e cN N
e eC N P N e e− −= − = − − , 

where (12) 1C =  for ideal connectivity, and smaller values for 12eN <  are assumed to 
emphasize loosely connected dummy atoms. The compactness of a given configuration X 
can be computed as an average connectivity of all nonsolvent atoms ( )eC N〈 〉 . Then, a 
configuration is characterized by the average looseness ( ) 1 ( )eP X C N= − 〈 〉 . The final step 
is to define a function to be minimized and to run the simulated annealing procedure. In this 
way, the Dammin program adds a penalty term P(X) and the function to be minimized 
becomes: 

 2( ) ( )f X P Xχ α= +  (56) 
where 0,α >  is the weight of the looseness penalty. The purpose of the penalty term is to 
guarantee the compactness of the resulting form. 

5. Results of simulated annealing in two electron density solution systems 
For the application of the simulated annealing the studied system must be monodisperse, 
diluted and with basically two electron densities. (<ρ>- ρ0), were <ρ> is the average electron 
density of particles in solution and ρ0 is the solvent electron density. The models were 
generated by the simulated annealing procedure implemented with the Dammin program 
(Svergun (1999)). Other programs such as Gasbor (Svergun et al., (2001)) may be used to 
evaluate models by simulated annealing. To exemplify the usefulness of the simulated 
annealing application, some ab initio three-dimensional models of proteins in solution 
generated from SAXS data were chosen, according to Figueira et al., (2007). Determination of 
the molecular shapes and oligomeric forms of the thyroid hormone nuclear receptor (TR) by 
SAXS can be shown as an example. Thyroid hormone (TH) plays important roles in cell 
differentiation, growth, and metabolism and is a major regulator of mitochondrial activity. 
In its physiologically most relevant form of triiodothyronine (T3), TH exerts most of its 
effects by binding to thyroid hormone receptors (TRs), which are members of the nuclear 
receptor (NR) family of transcription factors. Crystallographic structures of separate DNA 
and ligand binding domains (DBD and LBD) of TR have yielded significant insights into TR 
action but up to now no crystallographic structures of the complete TR structure or even of 
the construct containing both DBD and LBD were resolved. Low-resolution X-ray structures 
of the isoform β of the TR DBD-LBD were reconstructed form SAXS data measured in 
solution. SAXS data (figure 6), the overall parameters (table) and simulated annealing 
modeling (figure 7) reveal significant changes in the oligomeric state of the receptor, 
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suggesting that apo TRs form tetramers in solution which dissociate into dimers upon 
hormone binding. 
 

 
(A) 

 
(B) 

 
(C) 

Figure 6. Experimental scattering curves for hTRβ1 DBD-LBD construct in solution, which 
were fitted with the low and high-resolution models, and the distance distribution 
functions: (A) dimer and (B) tetramer. Log I vs q focusing on the fitting of the experimental 
curve at high q values with an inset containing the corresponding Guinier plots (log I vs q2): 
(1) experimental curve, (2) scattering intensity from the DAMs [Dammim], and (3) scattering 
intensity from the high resolution models. (C) Distance distribution functions of hTRβ1 
DBD-LBD dimers (●) and tetramers (■) are given. 
This methodology was also applied to other nuclear receptors and protein systems (Fischer 
et al., (2003), Garcia et al. (2006), Grimm et al. (2006), Calgaro et al. (2007), Nascimento et al. 
(2007), Mario Oliveira Neto et al. (2008)), in an addition to polymers in solutions (Leite et al. 
(2007)). For the latter, the initial part of the curve, probably due to larger particles, had to be 
disregarded, thus considering the polymer system as approximately monodisperse. Figure 8 
shows molecular models for the particle shape of poly(o-ethoxyaniline) at distinct pHs, 
obtained through an ab initio procedure based on simulated annealing using the dummy 
atom model (DAM). A less-packed, coiled structure is observed for pH 3, while at pH 10 
blobs are formed. 
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Figure 7. Steroviews showing the superposition of DAM and crystallographic structures for 
TRβ DBD-LBD dimer (left) and hTRβ DBD-LBD tetramer (right). Panels A-C display three 
orthogonal views. Ab initio simulations were performed using protocols implemented in 
Dammin. 

hTRβ1 DBD-LBD dimer hTRβ1 DBD-LBD tetramer Parameters/ 
sample expa modb DAMc expa modb DAMc 

Dmax (nm) 12.00 ± 1.00 12.80 12.10 18.00 ± 1.00 18.61 17.84 
Rg (nm) 3.79 ± 0.50 3.82 3.66 4.97 ± 0.50 4.96 4.84 

Discrepancy χ - 0.9 0.9 - 1.2 1.1 
Resolution 

(nm) 3.8 - 3.8 3.5 - 3.5 
a Calculated from the experimental data.  
b Parameters of the dimer and tetramer models.  
c Parameters of the dummy atom models averaged over 20 models. 
Table 1. structural parameters derived from SAXS data 

6. Conclusion 
Many structural studies have been performed with a combination of SAXS and simulated 
annealing to reconstruct three dimensional models. Simulated annealing is suitable for the 
study of monodisperse, diluted and two-electron densities systems. In this chapter we 
showed how the simulated annealing procedure can be used to minimize the discrepancy 
between two functions: the simulated intensity and the experimental one-dimensional SAXS 
curve. The goal was to find the most probable form for a protein molecule in a 
monodisperse dilute solution. In the past, this simulated intensity was obtained using 
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Debye’s formula, in time-consuming trial-and-error procedures. Today, with the power of 
modern computers, it can be applied quite straightforwardly generating low resolution 
models of proteins in an efficient way. The main advantage of solution scattering is its 
ability to probe the structure of native particles in nearly physiological conditions and to 
analyze structural changes in response to variations in external parameters. Then, the 
oligomerization state of proteins and large conformational changes may be monitored. 
Moreover, the approach can be extended to conjugated polymers in solution, as described in 
this Chapter. 
 

 
                                 (a)                                             (b)                                         (c) 
Figure 8. Average DAM for POEA in pH (a) 10.0, (b) 5.0 and (c) pH 3.0 (HCl) (adapted from 
Leite et al. (2007)). 
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1. Introduction 
Simulated Annealing is one the most well known local search methods. In practice, it is 
often used to solve discrete optimization problems; especially very tough problems, [54, 37, 
34, 3, 2, 41]. Global optimization is computationally extremely challenging and for large 
instances, exact methods reach their limitations quickly. Hence, in practice, often local 
optimization methods are used. Simulated annealing provides a powerful tool for escaping 
local optima by allowing moves to lower quality solutions with a pre-specified probability. 
Another big plus of Simulated Annealing is its ease of implementation. 
At each iteration of Simulated Annealing, the objective function value of the current solution 
and a new generated solution are compared. Improving moves are always accepted while 
only a fraction of non-improving moves are performed with the aim to escape local optimal 
solutions. The probability of accepting a non-improving move depends on the non-
increasing parameter of temperature. This technique comes from annealing in metallurgy. In 
this process, a metal is heated and slowly cooled off, in order to increase the size of its 
crystals while reducing the number of defects. The heating dissolves out atoms from their 
initial positions which can be seen as a local minimum with respect to energy level. Such 
atoms can then freely move around. Slowly cooling off has the effect that the free atoms can 
end up in positions with lower energy level than the initial positions. The crucial factor is to 
choose the cooling procedure appropriately, as cooling off to fast may not enable atoms to 
find better energy levels and cooling off to slowly is very time consuming. 
Simulated Annealing was introduced by Kirkpatrick et al. [33] in 1983 and independently by 
Černý [13] in 1985. It is an adaptation of a special Mont Carlo method generating sample 
states of a thermodynamic system which was introduced by Metropolis et al. in 1953, [38]. In 
1986, Lundy and Mees were able to proof that under some technical assumptions Simulated 
Annealing converges with probability 1 to the global optimum, [36]. 
In this work we equip the simulated annealing algorithm with K neigh- borhood strategies 
and apply the Optimal Stopping Problem to determine the optimal time for changing the 
temperature. This study is organized as follows. In Section 2, we give an introduction to 
meta-heuristics in general and show the connection to Simulated Annealing. The concept of 
negative dynamic programing is introduced in Section 3. This provides the mathematical 
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background for the modified Simulated Annealing algorithm provided in Section 4 using 
the optimal stopping problem. We illustrate this new method on the Traveling Salesman 
Problem in Section 5. We close with some conclusions in Section 6. 

2. Metaheuristics and simulated annealing 
Metaheuristic methods perform a more or less systematic search over the solution space by 
simultaneously employing processes to improve the solution quality as well as strategies to 
escape local optima. Metaheuristics got a lot of attention in the scientific community over 
the last decades. The significant advantages of metaheuristics over other solution methods 
have made them the favorable practical solution method for solving complex combinatorial 
optimization problems, [24]. 
Although these methods cannot guarantee optimality of their solutions, they have shown a 
credible performance in solving real world problems compared to exact methods. Moreover, 
metaheuristics can improve their performances in some circumstances when they are 
equipped with mechanisms borrowed fro the exact methods, e.g. bounding, [44, 9]. 
There is a wide range of metaheuristic methods, each one using its own ap- proach [8, 22, 7]. 
However, all of these methods can be classified into a few groups based on their structures. 
One of the most basic heuristics which plays a critical role in almost all metaheuristic 
methods is called local search. Local search starts from an initial solution and tries to improve 
its quality by a sequence of moves toward a local optimum [32]. Many metaheuristics are 
based on local search techniques; among them are for instance Simulated Annealing (SA), 
Variable Neighborhood Search (VNS) [39, 28], Tabu Search (TS) [23, 25], Greedy 
Randomized Adaptiv Search Procedures (GRASP) [19, 20], Genetic Algorithm (GA) [30, 26], 
Differential Evolution (DE) [43, 21] and Ant Colony Optimization (ACO) [17]. 
In general, all metaheuristics can be broken down into the following three main components 
[1]: 
• Initial Solution: The quality of the initial solution affects the performance of the 

metaheuristics. To diminish this dependency, some methods start their search from 
multiple initial solutions. 

• Neighborhood Selection: The way in which a metaheuristic moves from one solution 
to its neighbor is another critical component in all meta heuristics. In the early 
applications and theoretical developments of search methods in metaheuristics, the 
impact of the neighborhood selection has been underestimated. Instead, the neighbor 
selection has been limited to some factors such as ease of implementation, evaluation 
speed, usage of other researchers and empirical studies, [5]. In fact, mataheuristics often 
use the same neighborhood selection strategy during the course of thei search. Using 
different neighborhood selection strategies in a systematic way can significantly 
improve their efficiency and effectiveness. Especially selecting the neighborhood in 
multiple ways can be a powerful tool in preventing the method from being trapped in 
local optima. To the best knowledge of the authors, the only metaheuristic focusing on 
different neighborhood structures is VNS, see [24, 29]. 

• Optimization Strategy: Optimization strategy is the policy deciding about the 
acceptance or rejection of a new solution. This is the most diverse aspect of 
metaheuristics and it varies from a simple procedure to a complex and sophisticated 
algorithm. 
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2.1 Neighborhood selection analysis 
There are several factors to consider when defining a neighborhood structure. The following 
are characterizations of a proper neighborhood structure, [1]: 
• Effectiveness: the power of the neighborhood structure in covering th whole feasible 

space. 
• Efficiency: the efficiency of a neighborhood structure which is the quality of its 

performance in covering the feasible region depends on several (contradictory ) factors: 
• Speed: the number of moves needed to reach any arbitrary point in the feasible 

region. 
• Computational Effort: the computations needed for each movement. 
• Size (Number of Neighbors): the size of a neighborhood struc- ture is defined as 

the number of solutions which are accessible in an immediate move from the 
current solution. A larger number is usu- ally an advantage as any arbitrary 
solution can be reached in less number of moves. 

• Information Volume: the amount of information transformed. This information 
may be used to perform better moves through the feasible space. For instance, there 
are gradients, Hessian matrix, eigenvalues and convexity information for the 
continuous space and taboo list, function characteristics and lower & upper bounds 
for the discrete space. 

2.2 Simulated annealing 
Here, we describe SA in a mathematical manner. We do not go into full details but brief all 
the concepts we need in the later sections. For further mathematical analysis including the 
convergence rate and analysis, please refer, for instance, to the book by Otten and Ginneken 
[40] or the book by Salamon et al. [49]. 
Suppose Ω is the set of all feasible solutions and f : Ω →R is the objectiv function defined 

over the solution space. The purpose is to solve the (nonconvex) optimization problem 

 max f (ω) (1) 

 s.t. ω ∈ Ω (2) 

That is, we want to find the global maximum ω* in the solution space Ω. The global 
maximum ω* has the property that for every ω ∈ Ω we have f(ω) ≤ f(ω*). 
Let us define N(ω) as the neighborhood function for any ω ∈ Ω and consider Algorithm 2.1 
for a generic SA. GSA starts from an initial solution ω 0 2 Ω. At each iteration, GSA chooses 
the next solution among the neighbors of the current one, stage 5. The thermodynamic 
behavior of the system is modeled through the Metropolis function such that the probability 
of accepting the new solution ω’is defined as 

 
in which tp is the temperature parameter defined in the iteration loop p such that limp→∞tp = 0, 
stages 4 to 11 of Algorithm 2.1. For each temperature tp, this process is repeated Mp times, 
stage 4. After these Mp iterations are performed, the current temperature tp is decreased, 
stage 12. One of the easiest cooling procedures is a geometric sequence 
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in which the temperature at each step is γ times the temperature of the previ ous step. GSA 
repeats these steps until some stopping criteria is met, stage 3, and returns its current 
solution ω. Recognize that this might not be the best solution found and hence, one could 
modify the generic algorithm to store in addition to the current solution also the best 
solution. We brief on possible stopping criteria in Section 2.2.1. 
 

 
 

As already mentioned, the cooling procedure is a key element in the search mechanism of 
SA. If the cooling procedure is slow enough, then the system can reach its steady state at 
each temperature tp. This steady state follows th Boltzmann machine which can be defined 
as the probability of system being in state ω with the objective function value of f(ω) at 
temperature tp [35]. The probability of the system being in state ω at temperature tp is then 
given by 

 

2.2.1 Implementation issues of simulated annealing 
In general, the implementation of simulated annealing can be analyzed from two different 
points of views [18]: 
1. The generic choices, being the same among all problems. 
2. The problem-specific choices, changing from one problem to another. 
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The generic options for the implementation of SA can be stated as 
• Generation Probability Function: determines the probability of choosing each of the 

current solution’s neighbors. It is often set as a unifor function. However, sometimes 
other distributions are preferable, based on smarter mechanisms. 

• Acceptance Probability: the probability of accepting a solution wit a lower quality. 
• Cooling Schedule: the rate in which the temperature decreases may heavily affect the 

performance of SA. In fact the convergence of the algo- rithm is proven when the 
temperature decreases with a logarithmic rate [42]. A low cooling rate may increase the 
running time of the algorithm while a high cooling rate may cause being trapped in a 
local optimum. 

• Stopping Rule: the stopping criteria of the algorithm. It can be defined in many 
different ways. For instance, a simple stopping rule can be an upper limit on the 
number of iterations or an upper limit on the number of decreases in the temperature. 
The following two rules are among the most common stopping rules [42]: 
• If the best value found for the objective function so far does not increases by at least 

ε1% after performing p1 number of temperature decreases, the algorithm stops. 
• If the number of accepted moves in p2 temperature decreases is less than ε2%, then 

the algorithm stops. 
The problem-specific choices should be chosen carefully based on the nature of each 
problem. They are: 
• Objective Function and Solution Space: their structure is very im- portant in 

implementing the simulated annealing method. While the soft constraints can be added 
to the objective function with a penalty function, the hard constraints should be 
considered in defining the feasible region [52]. 

• Neighborhood Selection Strategy: the way in which the algorithm travels through the 
feasible space. This is the main focus of this study. 

More about implementation issues of SA can be found in the book [34, Chapter 5]. For a 
discussion of the advantages and pitfalls of SA refer, for instance, to [31]. 

3. Negative dynamic programming 
A stochastic process 

X = {Xt, t ∈ T} 
is a collection of random variables. That is, Xt is a random variable for each t belonging to 
index set T. Here, t refers to time and Xt is the state of the process at time t, [48, Chapter 1.9]. 
Consider a stochastic process that is observed at the beginning of a discrete time period to 
be in a particular state X0. After observation of the state, an action must be chosen. Based 
only on the state at that time and the action chosen, an expected reward is earned and the 
probability distribution for the next state is determined. We call the set of all possible actions 
to be chosen at each state the action space, [47, Chapter 3]. 
Now consider a stochastic process in which the state space is defined as a countable subset 
of non-negative integer numbers and with the action space of A. In addition, assume that if 
we are in state i and the action a is taken, then the cost of 

 C(i,a)≥0 (3) 
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is imposed to the system. As this problem is equivalent to a system with non positive 
reward function R(i, a) = −C(i, a), we call this problem Negative Dynamic Programming. For a 
comprehensive introduction to Negative Dynamic Programming, see [53]. 
A policy is defined as a procedure introducing the action to be chosen as  function of the 
state of the process. For each policy π, we define the expected profit function as 

 
(4) 

Equation (4) is derived from dynamic programming techniques [6] and indicates that the 
expected profit, if we start in state i and choose our action based on policy π, is equal to the 
expected value of the summation of all rewards (costs) obtained in each single state. 
Since C(i,a)≥0, Vπ may become infinite. If 

 
then π*is the optimal policy if 

 
for each i ≥ 0. If V (i) is infinite then all policies are optimal with infinite expected profit. For 
those instances where there is at least one state i with the property V (i) < ∞, the following 
two theorems can be stated. 
Theorem 1 ([47]). The optimality equation for an infinite horizon can be defined as 

 
 
for each i ≥ 0. 
Theorem 2 ([47]). Let f be a stationary policy defined by 

 

(5) 

then, for each i ≥ 0, we have Vf (i) = V (i). In other words, f is an optimal stationary policy. 
In fact, this theorem indicates that if the policy f at each state choose that action minimizing 
the expected cost of the system if it starts from that particular state and continues to infinity, 
then this policy is optimal. For more references on the application of dynamic programming 
in stochastic processes and more advanced topics, see [45, 50]. 

3.1 Optimal stopping problem 
The Optimal Stopping Problem is a classic problem in Negative Dynamic Programming and 
has been widely studied, [47, 16]. It has a broad range of applications in different areas 
including statistics and finance. For advanced topics and applications, see [15]. The reader is 
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referred to [51, 14, 11, 12, 55] for different settings of the problem. We use its solution 
approach to develop a new method in neighborhood search for Simulated Annealing. 
The Optimal Stopping Problem can be stated as follows. Given is a syste with non-negative 
integer states. Suppose, in each state the decision maker has the opportunity to either stop in 
the current state i and gain the corresponding reward of R(i), or pay a cost of C(i) and 
continue the process for one more step. If she decides to continue, she will be in state j in the 
next iteration with probability Pij . All values of R(i) and C(i) are non-negative. Let us define 
action 1 as the stop decision and state 2 as the continue decision. Theoretically, we can 
decide to continue at each state and never stop. Therefore, for technical reasons, we define 
state ∞ to represent the stop state. From these definitions, the following transition 
probabilities are immediate 

 (6) 

for all states i, j and all actions a ∈ {1, 2}. Moreover, the cost function is given by 

 (7) 

for all states i. 
As we have seen in equation (3), Negative Dynamic Programming require non-negative 
cost. In fact, the rewards R(i) can be considered as negative costs, C(i, 1) = −R(i) ≤ 0. Hence, 
the Optimal Stopping Problem cannot be embedded in the Negative Dynamic Programming 
framework in its current form. Thus, we need a method to transform it to a Negative 
Dynamic Programming problem. To do so, we make the following two assumptions 

 (8) 

 (9) 

Equation (8) means that the cost of continuing the process is strictly positive. That is, it is 
bounded from below by a positive value ε > 0. Similarly, equation (9) ensures that the 
reward in each state is bounded from above. 
Using assumptions (8) and (9), we set 

 
and re-define the Optimal Stopping Problem in the following way. Everything stays the 
same with the only difference that the reward earned in state i is R(i)−R, when deciding to 
stop. Equivalently, the cost of R−R(i) ≥ 0 is paid. Similar to equation (4), we define Vπ as the 
expected cost for each policy π. It can be shown that for such a policy we have 

 
 

The proof is straightforward and can be found, for instance, in [47, Chapter 3]. As a 
consequence, any optimal policy for the Optimal Stopping Problem is optimal for the re-
defined version, and vice versa. 
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A Markovian stochastic process [48, 45] is a stochastic process in which the state of the system 
in the future given the past and present states, is independent of the past states and depends 
only on the present state. 
Since the re-defined problem is a Markovian decision process with non-negative costs, it can 
be considered as a Negative Dynamic Programming problem and can be treated using the 
above cited theorems. Theorem 1 implies 

 
As V (i) = V (i) − R, we have 

 
Hence, the optimal policy is the same in both problems. Now, let V0(i) = −R(i) and define 
Vn(i) as the minimum expected cost if the decision maker starts in state i and has at most n 
decision opportunities before stopping. Then, for n > 0 we have 

 
Since adding one more decision opportunity will increase the chance to gain more, the 
following inequality holds 

 
Finally, we can conclude that 

 (10) 

Equation (10) is called Stability condition. A system satisfying this condition is called stable. It 
can be shown that the two assumptions (8) and (9) result in stability, [47, Chapter 3]. 
Let us define set B as 

 
Set B is in fact the set of all states where stopping is at least as good as continuing for exactly 
one more step and then stopping. The policy which stops at the first time when the system 
enters a state i belonging to set B is called One-Stage Look-Ahead policy. 
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Next, we see that if set B is a closed set over the state space, i.e., when the system enters a 
state in B then the probability leaving B is 0, then the One-Stage Look-Ahead policy is 
optimal, assuming the stability assumptions. 
Theorem 3 ([47]). If a process is stable and Pij = 0 for i ∈ B and j ∉ B, then the optimal policy stops 
at state i, if and only if i 2 B. In other words, the One-Stage Look-Ahead policy is optimal. 
Note that the assumption we have made for set B is in fact equivalent to the closeness of this set over 
the state space. 

4. Simulated annealing with optimal stopping time 
The use of multiple neighborhood structures has not received too much attentio in the 
literature of SA. In fact, the only paper in which SA is implemented using several 
neighborhood structure is by Bouffard and Ferland, [10]. In that paper, SA annealing is 
integrated with VNS to solve the resource-constrained scheduling problem. Three nested 
neighborhood structures have been employed along with a separately designed one. Their 
numerical studies confirms the advantage of multiple neighborhood selection strategies in 
SA. However, their algorithm is different than ours in the way in which the number of 
iteration at each temperature is determined and how the change in neighborhood structure 
is proposed. We are using Optimal Stopping Problem while their algorithm is based on 
Variable Neighborhood Search Method. 
In this section, we introduce a novel variation of SA using the Optimal Stopping Problem for 
solving the combinatorial optimization problem P. Without loss of generality, we can 
assume P to be a maximization problem in the form stated in equations (1) and (2). The main 
difference of the new algorithm with the generic SA is the usage of K different 
neighborhood structures. These structures can be defined based on any heuristic approach 
and are mostly problem-specific. We have to decide which of the K structures to use at each 
step. In fact, in each step we have to solve a decision problem with K different alternatives. 
After choosing the neighborhood structure in the current temperature tp, in each iteration, 
we are encountered with a two-alternative decision problem, either to continue or to stop. 
When we decide to stop, we may either switch to another neighborhood structure, if there is 
a profitable one, or decrease the temperature and repeat the process. These decisions are 
made using stochastic dynamic programming with a small amount of computational effort. 
Next to the K neighborhood structures, compared to the generic Simulated Annealing, the 
parameter of Mp iterations is determined by an optimal stopping decision. 
Assume that the objective function f can take n different values. In the case that it is 
continuous, we can divide the range of changes in the value of the objective function into n 
smaller intervals; each of them is represented by their mid-point. Such a range can be 
obtained by lower and upper bounds on the value of the objective function f. As we have a 
maximization problem, any feasible solution determines a lower bound. To obtain an upper 
bound, we may use different kinds of relaxation such as LP relaxation or Lagrangian 
Relaxation. 
The state of the system is defined as the best value of the objective function found so far. For 
instance, if the best found value for the objective function happens to be in an interval with 
mid-point r, we assert that the system is in state r. The justification for this definition is 
provided later in this section when we associate the state of the system with SA. Also, we 
define ( )k

ijP  as the transition probability which is the probability of going from state i to state 
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j if the neighborhood structure k is employed. We explain how these transition probabilities 
can be obtained in Section 4.1. Since each neighborhood structure incurs a different amount 
of computational time, we define C(k) as the cost of using the neighborhood structure k for 
one iteration. In general, this cost can also be state-dependent to represent the bigger effort 
needed as the value of objective function improves. But in our case, we keep it constant for 
each neighborhood structure. 
As is Section 3.1, we define ∞ as the stop state, 1 as the stopping decision and 2 as the 
continuing decision. Let us define now the cost and transition probabilities obtained in 
formulae (6) and (7) for our case. Obviously, we have 

C(i, 2) = C(k) . 
The cost of the system when stopping at a solution with the objective function value of i is 
equal to the negation of the highest value of the objective functio that we have found so far. 
Assume we stop at a solution with the objectiv function of i with a current temperature of tp 
after doing Mp iterations. If Om represents the value of the objective function at iteration m, 
then we have 

C(i, 1) = −max{O1,O2,O3, . . . ,O pM Mp = i} . 

This means, if we found a solution with the objective function value of j > i a iteration m, 
then our system has the recall property, that is, it remembers this solution as the best solution 
found until a solution with a better value of the objective function is found or the system 
stops. In the case of stop, if j is still the best solution found, then it is reflected as the state of 
the system. Hence, we get the following transition probabilities 

 
where g(k)(i, j) is the probability of moving from a solution with the objective value in range i 
to a solution with the objective value in range j using the kth neighborhood structure; 
regardless of any other decision. It is easy to see that the above probabilities sum up to 1. 
Similar to Section 3.1, where we transformed the Optimal Stopping Proble to a Negative 
Dynamic Programming problem, we define a second problem with non-negative costs and 
the same optimal policy as the original problem. This enables us to use the Optimal 
Stopping Problem principles to find the optimal policy for the original problem. Now, 
redefine the cost of each state as 

 (11) 

where U is a known upper bound for the value of the objective function. By definition (11), 
it is obvious that C(i, 1) ≥ 0. 
Comparing this problem with the Optimal Stopping Problem defined in the Section 3.1, 
bears in mind that the optimal policy for this problem has the following structure. If the 
highest value of the objective function found so far is greater than or equal to a threshold 
value *

ki , then stop and otherwise continue Hence, the stopping criterion is defined as 
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Next, let us find the optimal value of *
ki . Define set B as 

 
It is clear that B is a closed set; i.e., if the system enters a state belonging to B, then the 
probability that the next states of the system are not in B is equal to 0. The reasoning can be 
as follows. If we reach a value of the objective function which is in B, then it remains the 
highest value so far or it improves, but it is not possible that the best found value of the 
objective function declines. Hence, we can summarize this in the following formula 

 
Regarding this new definition of our transition probabilities which implies the closeness of 
B, it follows that all the assumption of Theorem 3 are satisfied and the One-Stage Look-
Ahead policy is optimal. 
Now, let us restate set B as 

 
So at each temperature tp, while implementing the kth neighborhood structure, in iteration 0, 
it is enough to find the value of *

ki and continue until reaching a value of the objective 

function which is greater than or equal to *
ki . Then, we stop and investigate whether 

proceeding with a new neighborhood structure, or reducing the temperature, is more 
beneficial. This decision can be made by comparing the updated values of *

ki for each 
neighborhood structure with the cost of its implementation. In other words, after the system 
stops with respect to the current neighborhood structure, all the values of *

ki are updated. 
These values are in fact the expected value of objective function when implementing this 
neighborhood structure. It is up to the decision maker to decide if it is worthy to continue 
with a new neighborhood structure knowing the value of *

ki and C(k). 
The only missing step in the chain of our proposed algorithm is which neighborhood 
structure has to be chosen after decreasing the temperature; i.e., which neighborhood 
structure is the best to start with in the new temperature. Of course, that neighborhood 
structure is desirable maximizing the expected value of the objective function. For example, 
consider the two neighborhood structures k and k’. By definition, *

ki is the expected profit 

before stopping in the case of using k, and *
'ki is the expected profit before stopping in the 
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case of using k’. So at each temperature, we compute the values of *
ki before starting. 

Afterwards, we implement the neighborhood structure having the highest value of *
ki . 

4.1 How to obtain the transition probabilities 
As mentioned in Section 4, to find the transition probabilities ( )k

ijP we need the values of 

g(k)(i, j). They are defined as the probability of moving from range I to range j using the 
neighborhood structure k regardless to whether we accept or reject the new solution. To 
obtain these values, we have to find out how the neighborhood structure affects the change 
in the value of objective function in general. As a neighborhood structure changes more 
components of the current solution, the range of changes in the value of objective function 
for the resulted solution increases. Roughly speaking, a more complicated neighborhood 
structure may cover a wide range of the feasible region and has the potential of moving far 
away in a few number of iterations while a simple neighborhood structure needs far more 
iterations to move from one part of feasible region to another. Thus, the probability of a 
specific change in the value of objective function plays a critical role in finding the transition 
probabilities. 
Define ( )k

dγ as the probability of a change equal to d in the objective function f using 

neighborhood structure k. Then the transition probabilities ( )k
ijP can be computed by 

considering the difference between i and j compared to the value of d. For an illustration, see 
Section 5 where it has been applied to the traveling salesman problem. 
The only missing part in this procedure is that ( )k

dγ actually represents the probability of 
change and does not provide any information about the directio of this change. In fact, this 
depends strongly on the value of the objective function in the current solution. For instance, 
if the value of the objective function in the current solution is in range i, then the bigger the 
value of i, the higher is the possibility that the change will happen in the negative direction. 
This implies that, in addition to ( )k

dγ , we need a quantitative measure to evaluate the 
direction of change. To do so, we use the lower bound L and upper bound U of the objective 
function and define the improvement index as 

 
The closer the value of α is to 0, the higher is the possibility of moving in the positive 
direction. So, if i is the current value of the objective function then 

 
is the probability of moving to i + d in the next iteration and 

 
is the probability of moving to i − d in the next iteration. Finally, ( )k

dγ can be defined based 
on the problem information. The way to do so depends heavily on the nature of the problem 
under study. We illustrate this procedure in Section 5 for the traveling salesman problem. 
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4.2 Summary of the algorithm 
Please consider Algorithm 4.1. Algorithm SAOST is similar to Algorithm 2.1, but having k 
different neighborhood structures instead of one. These neighborhood structure are defined 
beforehand based on any heuristic approach. In stage 3 of Algorithm 4.1, the cost of using 
each neighborhood structure for one iteration C(k) are computed, regarding to the 
computational burden imposed by each neighborhood structure and all other impacting 
factors. After that, in stage 5, the initial values for the transition probabilities are computed; 
i.e., the values for ( )k

dγ with respect to each neighborhood structure are found and used to 

determine ( )k
ijP . In case we do not have enough information to compute these probabilities, 

we can start with a uniform distribution and update the values as the algorithm proceeds. In 
the outer while loop, stage 5, the the optimal value of *

ki for each neighborhood structure is 
computed in stage 6. This allows us to find the neighborhood structure 

k*= argmax { ik, k = 1, 2, . . . ,K } 
having the highest value. The inner while loop, stages 8 to 15, is basically the same as stages 
4 to 11 of Algorithm 2.1 but replacing parameter Mp by the dynamically updated criteria 

f(ω) < *
*ki . 

After leaving the inner while loop, update the lower bounds and, if applicable also update 
the upper bounds; stage 16. Using the new lower and upper bound, the current value of the 
objective function and the change probabilities ( )k

dγ , the transition probability matrix is 
determined in stage 17. Afterwards, one can decided to continue in the current temperature 
with a new neighborhood structure or to decrease the temperature according to a 
predefined cooling scheme. 

4.3 Advantages and disadvantages 
Despite the variety of heuristic algorithms, there are some measures that enable us to 
evaluate each method and decide about its properness for a specifi problem. Following 
Glover and Kochenberger, a good metaheuristic must have the followings properties [24, 
Chapter 6]: 
1. Simplicity: A good meta-heuristic algorithm should be based on some simple 

principles which are applicable in all cases. 
2. Precision: Different steps of a meta-heuristic should be defined mathematically in an 

exact way and ambiguous terms should be avoided. 
3. Coherence: All steps of a meta-heuristic for any specific problem have  to follow the 

main principles of that heuristic. 
4. Efficiency: A good meta-heuristic should have the ability of finding an optimal or near-

optimal solution for a large group of real world problems. 
5. Effectiveness: A good meta-heuristic should find its final solution in a reasonable 

amount of computational time. 
6. Robustness: The performance of a meta-heuristic need to be verified on a large variety 

of problems. A good meta-heuristic is the one which is consistent with a wide range of 
problems. 
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7. User friendliness: A meta-heuristic algorithm need to be easy to un- derstand and more 
importantly, easy to implement. 

8. Innovation: It is expected for a new meta-heuristic to have some kind on innovation in 
its principles and applications. 

 

 
 

The following advantages can be stated for our proposed method: 
• Its ability to use the past information of the problem in making future decisions (tuning 

the search strategies) 
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• Less computational effort at each temperature because the best number of iteration in 
known 

• Less algorithm parameters 
• The ability to cover a wide range of the feasible space via appropriate selection of 

neighborhood structures 
• Its flexibility in employing different neighborhood structure 
• Considering different computational time for each neighborhood structure using the 

cost parameter 

5. TSP as an illustrative example 
In this section, we apply the proposed algorithm to the traveling salesman problem (TSP) 
just like the first application of SA by Černý [13]. The purpose is to illustrate the new 
algorithm. Hence, we only consider two basic neighborhood structures and do not discuss 
how to derive bounds or initial solutions. For a detailed discussion of the TSP, refer to [27, 
4]. Different neighborhood structures are discussed in detail in [46]. From now on, we 
assume that the TSP has n nodes and the graph is complete. 
In the first neighborhood structure, two adjacent nodes are randomly selected in the current 
solution and their positions are swapped. This is shown in Figure 1. The chain of nodes 
illustrate the order in which the nodes are visited in a tour starting from node 1 and 
returning after the nth node to node 1 again. As shown, two edges need to be removed and 
two new edges have to be created. 
 

 
Figure 1. The edges (1, 2) and (3, 4) should be substituted with the edges (1, 3) and (2, 4) in 
the new solution. 

This neighborhood structure has the following characterizations: 
• For every arbitrary solution, exactly n neighbor solutions exist for n ≥ 5. These solutions 

are obtained by exchanging the position of every two consecutive nodes in the current 
solution. 

• The speed of a neighborhood structure is defined as the number of moves needed to go 
from a solution to any other arbitrary solution. This number is O(n2) for this 
neighborhood structure. Considering a sequence of n distinct numbers and a desired 
order, the first number may need n − 1 moves to reach its appropriate position. This is 
n−2 for the second number and so on for others. This clearly gives us O(n2) number of 
moves. The only difference in this case with a TSP tour is that in a TSP tour, since we 
have loop and elements can move in both directions, we may need fewer number of 
moves to seat every node. But this at most may give us half of what we get above for 
the sequence of numbers which keeps the complexity still O(n2). 

• The computational effort needed for each move is four units, as two edges need be 
removed and two new edges have to be created. 
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The second neighborhood structure used in our numerical analysis is defined by exchanging 
the position of every two arbitrary nodes. This neighborhood structure is shown in Figure 2. 
 

 
 

Figure 2. The edges between (1, 2), (2, 3), (i − 1, i) and (i, i + 1) should be substituted with the 
edges (1, i), (i, 3), (i − 1, 2) and (2, i + 1) in the new solution. 

The following characterizations can be stated for this neighborhood structure: 

• There exist 2

( 1)( )
2

n n n −
= neighbors for each solution. These solutions are obtained by 

exchanging the position of every two arbitrary nodes. 
• The speed of this neighborhood structure is O(n): Note that in this case, the number of 

moves needed to go from a solution to any arbitrary solution in the worst case would be 
O(n). This is as in the worst case, each node needs at most one move to be seated in its 
appropriate position. 

• The computational effort is eight units. As it is clear from Figure 2, four existing edges 
need to be substituted with four new edges. 

Next, we define the transition probabilities ( )k
ijP of going from state i to state j using 

neighborhood structure k. To find the values of ( )k
dγ , the probability of an objective function 

change of d using neighborhood structure k, 1000 random moves are generated for each 
neighborhood structure k. For example, for the first neighborhood structure two edges are 
randomly picked and substituted with two other edges. The difference between the 
summation of the first two and the second two edges is recorded as the value of d for this 
experiment. Note that all of this process is performed regardless to feasibility. Recognize 
that we have not produced any feasible or infeasible solution. The purpose is to get a 
measure of how much the value of the objective function on average changes if a random 
move is implemented. For the second neighborhood structure, a similar process is 
performed but by exchanging four edges instead of two. Finally the values of d for each 
neighborhood structure are sorted in a frequency histogram and a discrete probability 
distribution is obtained. These probability distributions are in fact the values of ( )k

dγ . 
The remaining parts of the procedure are based on the algorithm itself. Problem-specific are 
only the definition of the neighborhood structures and the computation of the transition 
probabilities, next to the usual variables of SA as initial solution, stopping criteria or cooling 
scheme. 

6. Conclusion 
We developed a new SA-based algorithm for solving combinatorial optimization problems 
by modifying its search process. This algorithm takes advantage of multiple neighborhood 
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structures at the same time to reduce the chance of being trapped in the local optima. Unlike 
the Variable Neighborhood Search method which selects the neighborhood structure in a 
deterministic way, the idea behind this new method is based on a well-known problem in 
Stochastic Processes called Optimal Stopping Problem. At each iteration, the proposed 
algorithm chooses that neighborhood structure which has a higher expected improvement 
in the objective function. The generality of this method allows us to adapt and apply it to a 
wide range of complex problems with combinatorial nature. 
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1. Introduction 
Methods for the detection and evaluation of the statistical significance of spatial clusters are 
important geographic tools in epidemiology, disease surveillance and crime analysis. Their 
fundamental role in the elucidation of the etiology of diseases (Lawson, 1999; Heffernan et 
al., 2004; Andrade et al., 2004), the availability of reliable alarms for the detection of 
intentional and non-intentional infectious diseases outbreaks (Duczmal and Buckeridge, 
2005, 2006a; Kulldorff et al., 2005, 2006) and the analysis of spatial patterns of criminal 
activities (Ceccato, 2005) are current topics of intense research. The spatial scan statistic 
(Kulldorff, 1997) and the program SatScan (Kulldorff, 1999) are now widely used by health 
services to detect disease clusters with circular geometric shape. Contrasting to the naïve 
statistic of the relative count of cases, the scan statistic is less prone to the random variations 
of cases in small populations. Although the circular scan approach sweeps completely the 
configuration space of circularly shaped clusters, in many situations we would like to 
recognize spatial clusters in a much more general geometric setting. Kulldorff et al. (2006) 
extended the SatScan approach to detect elliptic shaped clusters. It is important to note that 
for both circular and elliptic scans there is a need to impose size limits for the clusters; this 
requisite is even more demanding for the other irregularly shaped cluster detectors. 
Other methods, also using the scan statistic, were proposed recently to detect connected 
clusters of irregular shape (Duczmal et al., 2004, 2006b, 2007, Iyengar, 2004, Tango & 
Takahashi, 2005, Assunção et al., 2006, Neill et al., 2005). Patil & Tallie (2004) used the 
relative incidence cases count for the objective function. Conley et al. (2005) proposed a 
genetic algorithm to explore a configuration space of multiple agglomerations of ellipses; 
Sahajpal et al. (2004) also used a genetic algorithm to find clusters shaped as intersections of 
circles of different sizes and centers. 
Two kinds of maps could be employed. The point data set approach assigns one point in the 
map for each case and for each non-case individual. This approach is interested in finding, 
among all the allowed geometric shape candidates defined within a specific strategy, the 
one that encloses the highest ratio of cases vs. non-cases, thus defining the most likely 
cluster. The second approach assumes that a map is divided into M regions, with total 
population N and C total cases. Defining the zone z as any set of connected regions, the 
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objective is finding, among all the possible zones, which one maximizes a certain statistic, 
thus defining it as the most likely cluster. Although the first approach has higher precision 
of population distribution at small scales, the second approach is more appropriate when 
detailed addresses are not available. The genetic algorithms proposed by Conley et al. (2005) 
and Sahajpal et al. (2004), and also Iyengar (2004) used the point data set methodology. 
The ideas discussed in this text derived from the previous work on the simulated annealing 
scan (Duczmal et al., 2004, 2006b), the elliptic scan (Kulldorff et al. 2006) and the genetic 
algorithm scan (Duczmal et al. 2007). The simulated annealing scan finds a sub-optimal 
solution trying to analyze only the most promising connected subsets of regions of the map, 
thus discarding most configurations that seem to have a low value for the scan likelihood 
ratio statistic. The initial explorations start from many and widely separated points in the 
configuration space, and concentrates the search more thoroughly around the 
configurations that show some increase in the scan statistic (the objective function). Thus we 
expect that the probability of overlooking a very high valued solution is small, and that this 
probability diminishes as the search goes on. Although the simulated annealing approach 
has high flexibility, the algorithm may be very computer intensive in certain instances, and 
the computational effort may not be predictable a priori for some maps. For example, the 
Belo Horizonte City homicide map analyzed in Duczmal et al. (2004) presented a very 
sharply delineated irregular cluster that was relatively easy to detect, with the relative risk 
inside the cluster much higher than the adjacent regions. This should be compared with the 
inconspicuous irregular breast cancer cluster in the US Northeast map studied in Duczmal 
et al. (2006b), which required more computer time to be detected, also using the simulated 
annealing approach. Although statistically significant, that last cluster was more difficult to 
detect due to the fact that the relative risk inside the cluster was just slightly above the 
remainder of the map. Besides, the intrinsic variance of the value of the scan likelihood ratio 
statistic for the sub-optimal solutions found at different runs of the program with the same 
input may be high, due to the high flexibility of the cluster instances that are admissible in 
this methodology. This flexibility leads to a very high dimension of the admissible cluster 
set to be searched, which in turn leads the simulated annealing algorithm to find sub-
optimal solutions that can be quite different in different runs. These issues are addressed in 
this paper. We describe and evaluate a new approach for a novel genetic algorithm using a 
map divided into M regions, employing Kulldorff´s spatial scan statistic. 
There is another important problem, common to all irregularly shaped cluster detectors: the 
scan statistic tries to find the most likely cluster over the collection of all connected zones, 
irrespectively of shape. Due to the unlimited geometric freedom of cluster shapes, this could 
lead to low power of cluster detection (Duczmal et al., 2006b). This happens because the best 
value of the objective function is likely to be associated with “tree shaped” clusters that 
merely link the highest likelihood ratio cells of the map, without contributing to the 
appearance of geographically meaningful solutions that delineate correctly the location of 
the true clusters. The first version of the simulated annealing method (Duczmal et al., 2004) 
controlled in part the amount of freedom of shape through a very simple device, limiting the 
maximum number of regions that should constitute the cluster. Without limiting 
appropriately the size of the cluster, there was an obvious tendency for the simulated 
annealing algorithm to produce much larger cluster solutions than the real ones. Tango & 
Takahashi (2005) pointed out this weakness, when comparing the simulated annealing scan 
with their flexible shape scan, which makes the complete enumeration of all sets within a 
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circle that includes the k-1 nearest neighbors. Nevertheless, the size limit feature mentioned 
above was not explored in their numerical comparisons, thus impairing the comparative 
performance analysis of the algorithms. In Duczmal et al. (2006b) a significant improvement 
in shape control was developed, through the concept of geometric “non-compactness”, 
which was used as a penalty function for the very irregularly shaped clusters, generalizing 
an idea that was used for the special case of ellipses (Kulldorff et al., 2006). Finally, the 
method proposed by Conley et al. (2005) employed a tactic to “clean-up” the best 
configuration found in order to simplify geometrically the cluster. It is not clear, though, 
how these simplifications impact the quality of the cluster shape, or how this could improve 
the precision of the geographic delineation of the cluster. 
Our goal is to describe cluster detectors that incorporate the desirable features discussed 
above. They use the spatial scan statistic in a map divided into a finite number of regions, 
offering a strategy to control the irregularity of cluster shape. The algorithms provide a 
geometric representation of the cluster that makes easier for a practitioner to soundly 
interpret the geographic meaning for the cluster found, and attains good solutions with less 
intrinsic variance, with good power of detection, in less computer time. In section 2, we 
review Kulldorff’s spatial scan statistic, the simulated annealing scan, the elliptic scan and 
the non-compactness penalty function. The genetic algorithm is discussed in section 3. The 
power evaluations and numerical tests are described in section 4. We present an application 
for breast cancer clusters in Brazil in section 5. We conclude with the final remarks in section 
6. 

2. Scan statistics and the non-compactness penalty function 
Given a map divided into M regions, with total population N and C total cases, let the zone 
Z be any set of connected regions. Under the null hypothesis (there are no clusters in the 
map), the number of cases in each region follows a Poisson distribution. Define L(Z) as the 
likelihood under the alternative hypothesis that there is a cluster in the zone Z , and L 0 the 
likelihood under the null-hypothesis. The zone Z with the maximum likelihood is defined as 
the most likely cluster. If μZ  is the expected number of cases inside the zone Z under the null 
hypothesis, c Z is the number of cases inside Z,  ( ) /Z ZI Z c μ=   is the relative incidence 
inside Z, O(Z) = (C - c Z)/(C - μZ) is the relative incidence outside Z , it can be shown that 

0( ) ( ) / ( ) ( )Z Zc C cLR Z L Z L I Z O Z −= =  

when I (Z) > 1, and 1 otherwise. The zone that constitutes the most likely cluster maximizes 
the likelihood ratio LR(Z) (Kulldorff, 1997). LLR(Z) = log(LR(Z)) is used instead of LR(Z). 

2.1 The simulated annealing scan statistic 
It is useful to treat the centroids of every cell in the map as vertices of a graph whose edges 
link cells with a common boundary. For the simulated annealing (SA) spatial scan statistic, 
the collection of connected irregularly shaped zones consists of all those zones for which the 
corresponding subgraphs are connected. This collection is very large, and it is impractical to 
calculate the likelihood for all of them. Instead we shall try to visit only the most promising 
zones, as follows (see Duczmal & Assunção (2004) for details). The zones z and w are 
neighbors when only one of the two sets w − z or z − w consists of a single cell. Starting 
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from some zone z(0), the algorithm chooses some neighbor z(1) among all the neighbors of 
z(0). In the next step, another neighbor z(2) is chosen among the neighbors of z(1), and so 
on. Thus, at each step we build a new zone adding or excluding one cell from the zone in the 
previous step. It is only required that there is a maximum size for the number of cells in 
each zone (usually half of the total number of cells). Instead of always choosing the highest 
LR neighbor at every step, the SA algorithm evaluates if there has been little or no LR 
improvement during the latest steps; in that case, the algorithm opts for choosing a random 
neighbor. This is done while trying to avoid getting stuck at LR local maxima. 
We restart the search many times, each time using each individual cell of the map as the 
initial zone. Thus, the effect of this strategy is to keep the program openly exploring the 
most promising zones in the configuration space and abandoning the directions that seems 
uninteresting. The best solution found by the program is called a quasi-optimal solution 
and, for our purposes, it is a compromise due to computer time restraints for the 
identification of the geographical location of the clusters. 
Duczmal, Kulldorff and Huang (2006) developed a geometric penalty for irregularly shaped 
clusters. Many algorithms frequently end up with a solution that is nothing more than the 
collection of the highest incidence cells in the map, linked together forming a “tree-shaped” 
cluster spread through the map; the associated subgraph resembles a tree, except possibly 
for some few additional edges. This kind of cluster does not add new information with 
regard to its special geographical significance in the map. One easy way to avoid that 
problem is simply to set a smaller upper bound to the maximum number of cells within a 
zone. This approach is only effective when cluster size is rather small (i.e., for detecting 
those clusters occupying roughly up to 10% of the cells of the map). For larger upper 
bounds in size, the increased geometric freedom favors the occurrence of very irregularly 
shaped tree-like clusters, thus impacting the power of detection. Another way to deal with 
this problem is to have some shape control for the zones that are being analyzed, penalizing 
the zones in the map that are highly irregularly shaped. For this purpose the geometric 
compactness of a zone is defined as the area of z divided by the circle with the perimeter of 
the convex hull of z. Compactness is dependent on the shape of the object, but not on its 
size. Compactness also penalizes a shape that has small area compared to the area of its 
convex hull. A user defined exponent a is attached to the penalty to control its strength; 
larger values of a increases the effect of the penalty, allowing the presence of more compact 
clusters. Similarly, lower a values allows more freedom of shape. The idea of using a penalty 
function for spatial cluster detection, based on the irregularity of its shape, was first used for 
ellipses in Kulldorff et al. (2006), although a different formula was employed. 
We will penalize the zones in the map that are highly irregularly shaped. Given a planar 
geometric object z , define A(z) as the area of z and H(z) as the perimeter of the convex hull 
of z . Define the compactness of  z  as 2K(z) 4 A(z)/H(z)π= . Compactness penalizes a shape 
that has small area compared to the area of its convex hull (Duczmal et al., 2006b). The 
strength of the compactness measure, employed here as a penalty factor, may be varied 
through a parameter a ≥ 0, using the formula K(z)a, instead of K(z). The expression 
LR(z)

( )aK z
is employed in this general setting as the corrected likelihood test function 

replacing LR(z) . The penalty function works just because the compactness correction 
penalizes very strongly those clusters which are even more irregularly shaped than the 
legitimate ones that we are looking for. 
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2.2 The elliptic scan statistic 
Kulldorff et al. (2006) presented an elliptic version of the spatial scan statistic, generalizing 
the circular shape of the scanning window. It uses an elliptic scanning window of variable 
location, shape (eccentricity), angle and size, with and without an eccentricity penalty. An 
ellipse is defined by the x and y coordinates of its centroid, and its size, shape, and angle of 
the inclination of its longest axis. The shape is defined as the ratio of the length and width of 
the ellipse. For a given map, we define a finite collection of ellipses E as follows. For 
computational reasons, the shapes s in E are restricted to 1, 2, 4, 8 and 20. A finite set of 
angles is chosen such that we have an overlapping of about 70% for neighboring ellipses 
with the same shape, size and centroid. The ellipses’ centroids are set identical to the cells’ 
centroids in the map. We choose a finite number of ellipses whose sizes define uniquely all 
the possible zones z formed by the cells in that map whose centroids lie within some ellipse 
of the subset. The collection E is thus formed by grouping together all these subsets, for each 
cell’s centroid, shape, and angle. We further define E(s) as the subset of E that includes all 
the shapes listed above in this section up to and including s. The choice of the collection E 
and its associated collection of zones is done beforehand and only once for a given map. The 
spatial scan statistic is thus applied to the collection of zones defined by E. The cluster 
likelihood was adjusted with a penalty function, the eccentricity penalty function 

4s/(s + 1)2 

so that the adjusted log likelihood is 

LLR * [4s/(s + 1)2]a 

and s is the cluster shape defined as the length of the longest axis divided by the length 
ofthe shortest axis of the ellipse. The tuning parameter a is similar to the parameter used in 
the simulated annealing scan. 

3. The genetic algorithm approach 
We approach the problem of finding the most likely cluster by a Genetic Algorithm 
specifically designed for dealing with this problem structure. Genetic Algorithms (GA’ s) 
constitute a family of optimization algorithms that are devoted to find extreme points 
(minima or maxima) of functions of rather general classes. 

3.1 The general structure of the genetic algorithm 
A GA is defined as any algorithm that is essentially structured as: 
• A set of N current candidate-solution points is maintained at each step of the algorithm 

(instead of a single current candidate-solution that is kept in most of optimization 
algorithms), and from the iteration to the next one the whole set is updated. This set is 
called the algorithm population (by analogy with a biological species population, which 
evolves according to natural selection laws), and each candidate-solution point in the 
population is called an individual. 

• In an iteration, the algorithm applies the following genetic operations to the individuals 
in the population: 
• Some individuals (a subset of the population, randomly chosen) receive some 

random perturbations; this operation is called mutation (in analogy with the 
biological mutation); 
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• Some individuals (another random subset of the population) are randomly paired, 
and each pair of individuals (parent individuals) is combined, in such a way that a 
new set of individuals (child individuals, or offspring) is generated as a combination 
of the features of the initial ones. This is called crossover (in analogy with the 
biological crossover); 

• After mutation and crossover, a new population is chosen, via a procedure that 
selects N individuals from ones that result from the mutation, from the crossover, 
and also from the former population. This procedure has some stochastic 
component, but necessarily attributes a greater chance of being chosen to the 
individuals with better objective function. This procedure is called the selection (by 
analogy with the natural selection of biological species), and results in the new 
population that will be subjected to the same operations, in the next iteration. 

• Other operations can be applied, in addition to these basic genetic operations, 
including: the elitism operation (a deterministic choice of the best individuals in a 
population to be included in the next population); a niche operation (a decrement of the 
probability of an individual being chosen if it belongs to a region that is already covered 
by many individuals); several kinds of local search; and so forth. 

Notice that the mutation introduces a kind of random walk motion to the individuals: an 
individual that were mutated iteration after iteration would follow a Markovian process. 
The crossover promotes a further exploitation of a region that is already being sampled by 
the two parent individuals. The selection introduces some direction to the search, 
eliminating the intermediate outcomes that don’t present good features, keeping the ones 
that are promising. The search in new regions (mainly performed via mutation) and in 
regions already sampled (mainly performed via crossover) is guided by selection. 
This rather general structure leads to optimization algorithms that are suitable for the 
optimization of a large class of functions. No assumption of differentiability, convexity, 
continuity, or unimodality, is needed. Also, the function can be defined in continuous 
spaces, or can be of combinatorial nature, or even of hybrid nature. The only implicit 
assumption is that the function should have some “global trend” that can be devised from 
samples taken from a region of the optimization variable space. If such a “global trend” 
exists, the GA is expected to catch it, leading to reasonable estimates of the function optima 
without need for an “exhaustive search”. 
There is a large number of different Genetic Algorithms already known and the number of 
possible ones is supposed to be very large, since each genetic operation can be structured in 
a large number of different ways, and the GA can be formed by any combination of 
operators. However, it is known that some GA’s are much better than other ones, under the 
viewpoint of both reliability of solution and computational cost for finding it (Takahashi et 
al., 2003). In particular, for problems of combinatorial nature, it has been established that 
algorithms employing specific crossover and mutation operators can be much more efficient 
than general-purpose GA’s (Carrano et al., 2006). This is due to the fact that a “blind” 
crossover or mutation that would be performed by a general-purpose operator would have 
a large probability of generating an unfeasible individual, since most of combinations of 
variables are usually unfeasible. Specific operators are tailored in order to preserve 
feasibility, giving rise only to feasible individuals, by incorporating the specific rules that 
define the valid combinations of variables in the specific problem under consideration. The 
GA that is presented here has been developed with specific operators that consider the 
structure of the cluster identification problem. 
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3.2 The offspring generation 
We shall now discuss the genetic algorithm developed here for cluster detection and 
inference. The core of the algorithm is the routine that builds the offspring resultant from 
the crossing of two given parents. Each parent and each offspring is thus a set of connected 
regions in the map, or zone. We should associate a node to each region in the map. Two 
nodes are connected by an edge if the corresponding regions are neighbors in the map. In 
this manner, the whole map is associated to a non-directed graph, consisting of nodes 
connected by edges. Given the non-disjoint parents A and B, let C = A∩B , and D ⊆C a 
randomly chosen maximal connected set. We shall now assign a level, that is, a natural 
number to each of the nodes of the parent A. All the nodes in D are marked as level zero. 
Define the neighbors of the set U in the set V as the nodes in V that are neighbors of some node 
belonging to U. Pick up randomly one neighbor  x1 of A0 = D,  x1 ∈ A - A0, and assign the 
level 1 to it. Then pick up randomly one neighbor  x2 of  A1  = D∪{ x1 },  x2 ∈ A - A1  , and 

assign the level 2 to it. At the step n, pick up randomly one neighbor x n of An-1= D∪{x1,…, xn-1 
} , x n∈ A - An-1, and assign the level n to it. In this fashion, choose the nodes, , x1,…, x m  for all 
the m nodes of the set A - D and assign levels to them. These m nodes, plus the virtual root 
node r , along with all the oriented edges (x j, x k) , where x k was chosen as the neighbor of x j 
in the step k ( j < k) , and the oriented edges (r, x k) , where x k is a neighbor of D, forms an 
oriented tree T A , with the following property: 
Lemma 1: For each node x i ∈ A- D there is a path from the root node r to x i, consisting only 
of nodes from the set {x1,…, xi-1 }. 
Proof: Follow the oriented path contained in the tree T A from r to x i. 
Note that the task of assigning levels to the nodes is not uniquely defined. 
Repeat the construction above for the parent B and build the corresponding oriented tree  
TB, but at this time using negative values -1,-2,-3,… for the levels, instead of 1,2,3,… (see the 
example in Figure 1). If A - D and B - D are non-disjoint, the nodes y ∈ C - D are assigned 
with levels from both trees T A and TB (refer to Figure 1 again). 
We now construct the offspring of the parents A and B as follows. Let m A ≥ 2 and mB ≥ 1 be 
respectively the number of elements of the sets A - D and B - D, and suppose, without loss of 
generality, that m A ≥ mB. The offspring is formed by the mB + ( m A - mB - 1) = m A - 1 ordered 
sets of nodes corresponding to the sequences of levels (remembering that the level zero 
corresponds to the nodes of the set D): 

 
If some sequence has two levels corresponding to the same node (it can happen only for the 
nodes in the set C - D ), then count this node only once. Every set in the offspring has no 
more than m A + m D nodes, where m D is the number of nodes in D. 
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Lemma 2: All the sets in the offspring of the parents A and B are connected. 
Proof: Apply lemma 1 to each node of each set in the offspring to check that there is a path 
from that node to the set D. 
Figure 1A shows an example with two possible level assignments and their respective trees. 
The root node is formed by two regions. In the example of Figure 1B the set C is non-
connected and consequently the node e has double level assignment. The successive 
construction of the ordered sets in the offspring requires a minimum of computational 
effort: from one set to the next, we need only to add and/or remove a region, simplifying 
the computation of the total population and cases for each set. Those totals are used to 
compute the spatial scan statistic. Besides, there is no need to check that each set is 
connected, because of lemma 2 (this checking alone accounted for 25% of the total 
computation time). Even more important is the fact that the offspring is evenly distributed 
along an imaginary “segment” across the configuration space, with the parents at the 
segment’s tips, making easier for the program to stay next to a good solution, which could 
be investigated further by the next offspring generation. 

3.3 The population evolution 
The organization of the genetic algorithm is standard. We start with an initial population of 
M sets, or seeds, to be stored in the current generation list. Each seed is built through an 
aggregation process: starting from each map cell at a time, adjoin the neighbor cell that 
maximizes the likelihood ratio of the aggregate of cells adjoined so far, or exclude an 
existing one (provided that it does not disconnect the cluster), if the gain in likelihood ratio 
is greater; continue until a maximum number of cells is reached, or it is not possible to 
increase the likelihood of the current aggregate. In this fashion, the initial population 
consists of M (not necessarily distinct) zones, in such a way that each one of the M cells of 
the map becomes included in at least one zone. 
We sort the current generation list in decreasing order by the LLR (modified as 
log(LR(z) ( )aK z ) in section 2), and pick up randomly pairs of parent candidates. If the 
conditions for offspring generation are fulfilled, the offspring is constructed and stored in an 
offspring list. This list is sorted in decreasing LLR order. The top 10% parents are maintained 
in the M-sized new generation list, and the remaining 90% posts of the list are filled with the 
top offspring population. At this step, mutation is introduced. We simply remove and add 
one random region at a small fraction of the new generation list (checking for 
connectedness). Numerical experiments show that the effect of mutation is relatively small 
(less than 0.1 in LLR gain for mutation rate up to 5%), and we adopt here 1% as the standard 
mutation rate. After that, the current generation list is updated with the LLRordered new 
generation list. The process is repeated for G generations. 
We make at most tcMAX tentative crossings in order to produce wscMAX well succeeded 
crossings (i.e., when A ∩ B ≠ φ ) at each generation. The graph of Figure 2 shows the results 
of numerical experiments. Each curve consists of the average of 5,000 runs of the algorithm, 
varying wscMAX and G such that wscTOTAL= wscMAX * G, the total number of well-succeeded 
crossings, remains equal to 4,000. Smaller wscMAX values cause more frequent sorting of the 
offspring, and also make the program to remove low LLR configurations faster. As a 
consequence, high LLR offspring is quickly produced in the first generations, at the expense 



A Comparison of Simulated Annealing, Elliptic and Genetic Algorithms  
for Finding Irregularly Shaped Spatial Clusters 

 

391 

of the depletion of the potentially useful population with lower LLR configurations. That 
depletion impacts the increase of the LLR on the later generations, because it is more 
difficult now to find parents pairs that generate increasingly better offspring. Conversely, 
greater wscMAX values causes less frequent sorting of the offspring, lowering the LLR 
increase a bit in the first generations, but maintains a varied pool that produces interesting 
offspring, impacting less the LLR tax in the later generations. So, given the total number of 
well-succeeded crossings that we are willing to simulate, wscTOTAL, we need to specify the 
optimal values of wscMAX and G that produce the best average LLR increase. From the result 
of this experiment, we are tempted to adopt the following strategy: allow smaller values of 
wscMAX for the first generations and then increase wscMAX for the last generations. That will 
produce poor results, because once we remove the low LLR configurations early in the 
process, there will not be much room for improvement by increasing wscMAX later, when the 
pool is relatively depleted. Therefore, a fixed value of wscMAX is used. 

4. Power and performance evaluation 
In this section we build the alternative cluster model for the execution of the power 
evaluations. We use the same benchmark dataset with real data population for the 245 
counties Northeastern US map in Figure 4, with 11 simulated irregularly shaped clusters, 
that has been used in Duczmal et al. (2006b). Clusters A-E are mildly irregularly shaped, in 
contrast to the very irregular clusters F-K. For each simulated data under these 11 artificial 
alternative hypotheses, 600 cases are distributed randomly according to a Poisson model 
using a single cluster; we set a relative risk equal to one for every cell outside the real 
cluster, and greater than one and identical in each cell within the cluster. The relative risks 
were defined such that if the exact location of the real cluster was known in advance, the 
power to detect it should be 0.999 (Kulldorff et al., 2003). Table 1 displays the power results 
for the elliptic, GA and SA scan statistics. For the GA and SA scans, for each upper limit of 
the detected cluster size, with (a=1) and without (a=0) noncompactness penalty correction, 
100,000 runs were done under null hypothesis, plus 10,000 runs for each entry in the table, 
under the alternative hypothesis. The upper limit sizes allowed were 8, 12, 20 and 30 
regions, indicated in brackets in Table 1. An equal number of simulations was done for the 
elliptic scan, for the E(1) (circular), E(2), E(4), E(8) and E(20) sets of ellipses, without using 
the eccentricity penalty correction (a=0). 
The power values for the statistics analyzed here are very similar. For the SA and GA scans, 
the higher power values occur generally when the maximum size allowed matches the true 
size of the simulated cluster. For the elliptic scan, the maximum power was attained when 
the eccentricity of the ellipses matched better the elongation of the clusters.  
The power performance was good, and approximately the same on both scan statistics for 
clusters A-E. The performance of the GA was somewhat better compared to the SA 
algorithm for the remaining clusters F-K, although the power was reduced on both 
algorithms for those highly irregular clusters. The GA performed generally slightly better 
for the highly irregular clusters I-K. For the clusters G (size 26) and H (size 29) the GA 
performance was better when the maximum size was set to 20 and 30, and worse when the 
maximum size was set to 8 and 12. For the clusters F and H, the GA performed generally 
slightly better using the full compactness correction (a=1) and worse otherwise (a=0). 
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Table 1: Power comparison between the elliptic scan (E), the genetic algorithm (GA), and the 
simulated annealing algorithm (SA), in parenthesis. For the last two methods, the 
noncompactness penalty correction parameter a was set to 1 (full correction) or 0 (no 
correction). The numbers in brackets indicate the maximum allowed size for the most likely 
cluster found. 
The optimal power of the circular (E(1)) scan was above 0.83 for clusters A–E, I, and K, and 
below 0.75 for the remaining data with clusters F, G, H, and J. The performance was very 
poor on simulated data with cluster G, and the optimal power achieved was only 0.61, using 
the maximum shape parameter 20. Similar comments apply for clusters F, H, and J, with 
optimal power about 0.70 and maximum shape parameters 4 and 8. Better power was not 
achieved when we increased the maximum elliptic shape to 20 for these data. When clusters 
are shaped as twisted long strings, the elliptic scan tended to detect only straight pieces 
within them: this phenomenon was observed in clusters F, G, H, and J, resulting in 
diminished power. Otherwise, when a cluster fits well within some ellipse of the set, best 
power results were attained, as observed for the remaining clusters. The elliptic scan 
obtained somewhat better results for clusters A, C, F, I and K, which are easily matched by 
ellipses, and worse for the “non-elliptical” clusters E, G and J. 
Numerical experiments show that the GA scan is approximately ten times faster, compared 
to the SA scan presented in Duczmal et al. (2004). For the GA, the typical running time for 
the cluster detection and the 999 Monte Carlo replications in the 72 regions São Paulo State 
map of section 5 and the 245 regions Northeast US were respectively 5 and 15 minutes with 
a Pentium 4 desktop PC. Using exactly the same input for 5,000 runs for both the GA and SA 
scans, calibrated to achieve the same LLR average solution values in the Northeast US map 
under null hypothesis, we have verified that the GA sub-optimal solutions have about five 
times less LLR variance compared to the SA scan approach. 

5. An application for breast cancer clusters 
The genetic algorithm is applied for the study of clusters of high incidence of breast cancer 
in São Paulo State, Brazil. The population at risk is 8,822,617, formed by the female 
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population over 30-years old, adjusted for age applying indirect standardization with 4 
distinct 10 years age groups: 30-39, 40-49, 50-59, and 60+. In the 4 years period 2000-2003, a 
total of 14,831 cases were observed. The São Paulo State map was divided into 72 regions. 
The breast cancer data was obtained from Brazil´s Ministry of Health DATASUS homepage 
(www.datasus.gov.br) and de Souza (2005). Figure 3A shows the relative incidence of cases 
for each region, where the darker shades indicate higher incidence of cases. The other three 
maps (Figures 3B-D) show respectively the clusters that were found using values 1.0, 0.5 and 
0.0 for the parameter a, which controls the degree of geometric shape penalization. Using 
999 Monte Carlo replications of the null hypothesis, it was verified that all the clusters are 
statistically significant (p-values 0.001). The maximum size allowed was 18 regions for all 
the clusters. Notice that when a = 1.0 the cluster is approximately round, but with a hole, 
corresponding to a relatively low count region that was automatically deleted. As the value 
of the parameter a decreases we observe the appearance of more irregularly shaped clusters. 
As more irregularly shaped cluster candidates are allowed, due to the lower values of the 
parameter a, the LLR values for the most likely cluster increase, as can be seen in Table 2. 
The case incidence is about the same in all the clusters, by Table 2. It is a matter of the 
practitioner’s experience to decide which of those clusters is the most appropriate in order 
to delineate the “true” cluster. The cluster in Figure 3B should be compared with the 
primary circular cluster that was found by SatScan (the rightmost circle in Figure 3D). It is 
also interesting to compare the cluster in Figure 3D with the primary and secondary circular 
clusters that were found by the circular SatScan algorithm (see the circles in Figure 3D). 
 

 
Table 2. The three clusters of Figure 3B-D. 

6. Conclusions 
We described and evaluated a novel elitist genetic algorithm for the detection of spatial 
clusters, which uses the spatial scan statistic in maps divided into finite numbers of regions. 
The offspring generation is very inexpensive. Children zones are automatically connected, 
accounting for the higher speed of the genetic algorithm. Although random mutations are 
computationally expensive, due to the necessity of checking the connectivity of zones, they 
are executed relatively few times. Selection for the next generation is straightforward. All 
these factors contribute to a fast convergence of the solution. The variance between different 
test runs is small. The exploration of the configuration space was done without a priori 
restrictions to the shapes of the clusters, employing a quantitative strategy to control its 
geometric irregularity. The elliptic scan is well suited for those clusters that fit well within 
some ellipse. The circular, elliptic, and SA scans have similar power in general. The elliptic 
scan method is computationally faster and is well suited for mildly irregular-shaped cluster 
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detection, but the non-compactness corrected SA and GA scans detects clusters with every 
possible shape, including the highly irregular ones. The choice of the statistic depends on 
the initial assumptions about the degree of shape irregularity to allow, and also on the 
availability of computer time. 
The power of detection of the GA scan is similar to the simulated annealing algorithm for 
mildly irregular clusters and is slightly superior for the very irregular ones. The GA scan 
admits more flexibility in cluster shape than the elliptic and the circular scans, and its power 
of detection is only slightly inferior compared to these scans. The genetic algorithm is more 
computer-intensive when compared to the elliptic and the circular scans, but is faster than 
the simulated annealing scan. The use of penalty functions for the irregularity of cluster’s 
shape enhances the flexibility of the algorithm and gives to the practitioner more insight of 
the geographic cluster delineation. We believe that our study encourages further 
investigations for the use of genetic algorithms for epidemiological studies and syndromic 
surveillance. 
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Figure 1A. The parents A ={a,b,c,e,f,g,h} and B ={f,h,i,j,k,l} have a common part C ={f,g}. Two 
possible level assignments are shown with their respective sets of trees. The level 
assignment to the left produces more regularly shaped offspring clusters, compared to the 
level assignment to the right of the figure. 
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Figure 1B. The parents A ={b,c,e,f,g,h,i,j,k,l} and B ={a,b,c,d,e} have a common par C ={b,c,e}. In 
this example we choose the maximal connected set D ={b,c}. Observe that the node e, 
belonging to the set C-D, has both positive (7) and negative (-2) levels. The virtual root node 
r is made collapsing the two nodes of D (represented by the ellipse), and forms the root of 
the trees T A (bottom left) and T B (bottom right). 
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Figure 2. A numerical experiment shows how the number of wel succeeded crossings per 
generation (wsc MAX ) affects the LLR gain. Each little square, representing one generation, 
consists of the average of 5,000 runs of the genetic algorithm. A total of 4,000 wellsucceeded 
crossings were simulated for each run, for several values of wsc MAX. In a given curve, with a 
fixed number of crossings per generation, the LLR value increases rapidly at the beginning, 
slowing further in the next generations. The optimal value for wsc MAX is 400, in this case. 
Had the total of well-succeeded crossings been 1,000, the optimal value of wsc MAX should be 
200, as may be seen placing a vertical line at the 1,000 position. 
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Figure 3: The clusters of high incidence of breast cancer in São Paulo State, Brazil, during the 
years 2000-2003, found by the genetic algorithm. The map in Figure 3A displays the relative 
incidence of cases in each region. The maps 3B, 3C and 3D show respectively the clusters 
with penalty parameters a=1, a=0.5, and a=0. The primary (right) and secondary (left) 
circular clusters found by SatScan are indicated by the two circles in Figure 3D, for 
comparison. 
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Figure 4. New England’s benchmark artificial irregularly shaped clusters used in the power 
evaluations. 
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1. Introduction   
Nowadays, there are many optimization problems where exact methods do not exist or 
where deterministic methods are computationally too complex to implement. Simulated 
annealing may be the answer for these cases. It is not greedy in the sense that it is not fool 
with false minima, and is pretty easy to implement. Furthermore, because it does not require 
a mathematical model, it can be used to solve a broad range of problems. 
Unfortunately, mapping a real problem to the domain of simulated annealing can be 
difficult and requires familiarity with the algorithm. More often than not, it is possible to 
encode the solution (solve the problem) using several approaches. In addition, there are 
other factors that determine the success of failure of this algorithm.  This chapter reviews 
how to plan the encoding of the solution, and discusses how to decide which encoding is 
more appropriate for each application.  
Several practical considerations for the proper implementation of simulated annealing are 
reviewed and analyzed. These include how to perturb the solution, how to decide a proper 
cooling schedule, and most important, how to properly implement the algorithm. Several 
cooling schedules are covered, including exponential, linear and temperature cycling. 
Additionally, the impact of random number generators is examined; how they affect the 
speed and quality of the algorithm. Essentially, this chapter is focused for those who want to 
solve real problems using simulated annealing for artificial intelligence, engineering, or 
research. 
An illustrative example is solved using simulated annealing and implemented in a popular 
programming language using an object-oriented approach. This chapter offers a great 
opportunity to understand the power of this algorithm as well as to appreciate its 
limitations. 
Finally, it is reviewed how is possible to combine simulated annealing with other 
optimization algorithms (including the deterministic ones) to solve complex optimization 
problems. In particular, it is discussed how to train artificial neural networks using 
simulated annealing with gradient based algorithms. 
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2. Simulated annealing basics 
Simulated annealing is an optimization method that imitates the annealing process used in 
metallurgic. Generally, when a substance goes through the process of annealing, it is first 
heated until it reaches its fusion point to liquefy it, and then slowly cooled down in a control 
manner until it solids back. The final properties of this substance depend strongly on the 
cooling schedule applied; if it cools down quickly the resulting substance will be easily 
broken due to an imperfect structure, if it cools down slowly the resulting structure will be 
well organized and strong. 
When solving an optimization problem using simulated annealing the structure of the 
substance represents a codified solution of the problem, and the temperature is used to 
determined how and when new solutions are perturbed and accepted. The algorithm is 
basically a three steps process:  perturb the solution, evaluate the quality of the solution, and 
accept the solution if it is better than the new one. 
To implement simulated annealing, it is usually necessary to generate huge amounts of 
random numbers. Unfortunately, typical random generators included in programming 
languages are of low quality, and are not useful for simulated annealing. These random 
sequences have a finite length and may have correlation. Choosing an appropriate random 
generator requires specific knowledge of the problem; basically it is important to establish 
the amount of random numbers that will be required and the speed of the generator (some 
problems may require quality or speed; some others will require both quality and speed). 
(Press et al., 2002) provides a comprehensive review on the subject and includes actual code 
to implement high quality random number generators.  
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Fig. 1. The method of simulated annealing. 
 
The method of simulated annealing can be easily understood by observing Fig. 1 which 
shows a hermetic box with an internal uneven surface (with peaks and valleys), and a ball 
resting on this surface. The objective is to move the ball to a position as close as possible to 
the bottom of the box. At the beginning of the process the temperature is high and strong 
perturbations are applied to the box allowing the ball to easily jump over high peaks in 
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search of the bottom of the box.  Because of the high energy applied, it is possible for the ball 
to go down or up easily. As time goes by, the temperature decreases and the ball has less 
energy to jump high peaks. When the temperature has decreased to the point when the ball 
is able to jump only very small peaks, the ball should be hopefully very close to the bottom 
of the box and the process is completed. As it can be from this example, many things can go 
wrong with simulated annealing; these problems and how to avoid them will be discussed 
in Section 4. 

3. Advantages of using simulated annealing. 
3.1 A mathematical model is not required 
As odd at it sounds, some problems in real life do not have an exact model, or sometimes, 
the model is too complicated to be useful.  In other cases, there is so little information about 
the problem that existing models cannot be appropriately used. For these cases, simulated 
annealing may be perfect as long as two basic operations can be implemented:  perturb and 
evaluate. Thus, if a solution can be designed so that it can be perturbed and evaluated, then 
the problem can be solved using simulated annealing for sure. 

3.2 The problem has many solutions and some of them are not optimal 
Unfortunately, some problems have their solution surrounded by non optimal solutions 
(false minima), and typical optimization algorithms may have a bad time trying to escape 
from these false solutions. Consider a problem that could be described as a system of non-
linear equations, clearly, the mean-squared error may be used to measure the quality of the 
solution. 
For these problems, the mean-squared error is compute using the actual output of the 
system and the desired output of it. Generally, gradient based algorithms are a good choice 
to minimize the mean-squared error and find a solution, as they required much less time 
than solving the problem if simulated annealing is used. However, gradient based 
algorithms require knowledge of the derivative of the error with respect to each unknown 
and they are useful when the global minimum is clearly defined. On the other hand, 
simulated annealing does not required derivative information, and it is not easily fooled 
with local minima.    
Before moving our attention to another topic, it is important to mention that simulated 
annealing and gradient based algorithms can be used together as hybrids algorithms for 
global optimization. First, simulated annealing is used to find a rough estimate of the 
solution, then, gradient based algorithms are used to refine the solution (Masters, 1993); note 
that more research is needed to optimize and blend simulated annealing with other 
optimization algorithms and produce hybrids. 

4. Typical problems when using simulated annealing. 
4.1 Initial temperature is too high 
Consider again Fig. 1 that described pictorially the process of simulated annealing, at high 
temperatures the ball has enough energy to jump over high peaks and it can go easily up or 
down. If the initial temperature is too high, the ball may fall down and reach a position close 
to the bottom, but it is also very likely that the ball may jump up ending in a position even 
higher than the initial position. In other words, applying too much perturbation is useless 
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and should be avoided. This raises the questions:  how much perturbation should be 
applied? How long a level or perturbation should be applied?  

4.2 Temperature goes down to quickly 
As it can be seen from the previous example, at high temperatures the method of simulated 
annealing is searching for the global minimum in a broad region, and as the temperatures 
decreases the method is reducing this search region and tries mainly to refine the solution 
found at high temperatures. This is one of the good qualities that makes simulated 
annealing superior when the problem at hand has several deep valleys. Simulated annealing 
does not easily fall down into a deep valley located close by, instead it searches in an ample 
area trying always to go down and very occasionally up as the temperature allows. On the 
other hand, typical optimization methods fall quickly into a close deep valley even if it not 
the deepest valley. Thus, it is important to note that the temperature must go down slowly 
allowing the method to search thoroughly at each temperature.   
There are two typical cooling schedules in the literature: exponential and linear. Fig. 1 
shows a typical exponential cooling, as it can be seen from this figure, the process spends 
little time at high temperatures, and as the temperature decreases more and more time is 
spend at each temperature, allowing the algorithm to refine very well the solution found at 
high temperatures. On linear cooling, the temperature decreases linearly as the time 
increases, thus, the algorithm spends the same amount of time at each temperature. Clearly, 
linear cooling must be used when there are several deep valleys close by (note the quality of 
the final solution using linear cooling may not be good). On temperature cycling the 
temperature goes down and up cyclically refining the quality of the solution at each cycle.  
As it was indicated in (Ledesma et al., 2007), temperature cycling is beneficial for training of 
auto associative neural networks. Additionally, it has been pointed out (Reed & Marks, 
1999) that a temperature reduction schedule inversely proportional to the logarithm of time 
will guarantee converge (in probability) to a global minimum, however, in practice this 
schedule takes too long, and it is often more efficient to repeat the algorithm a number of 
times using a faster schedule. Other cooling schedules area described in (Luke, 2007).   

4.3 Process completes and the solution is not optimal 
At the beginning of the process, the temperature and error are high, as time goes by, the 
temperature decreases slowly spending some time at each temperature and the error should 
be hopefully also decreasing. However, it is possible that the process completes without 
finding an optimal solution. Carefully selecting the parameters of simulated annealing may 
reduce the probability of this to happen, but this can happen. An easy solution to increase 
the probability of success is to try again and again until a desired error is obtained. 

5. Simulated annealing implementation 
Simulated annealing is a two steps process: perturb, and then evaluate the quality of the 
solution. Usually, the algorithm uses the solution error to make decisions about the 
acceptance of a new solution. Next, some notation will be offered to make a clear 
presentation.  Let represent a problem solution of M variables as 

 X = {x1, x2, x3, … , xM} (1) 
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where x1, x2, x3, …, xM are to be found by means of simulated annealing. This representation 
may be useful for most optimization algorithms; however, simulated annealing is a 
temperature dependent algorithm and the process temperature must be introduced in 
Equation 1.  Let define T as the process temperature 

 T = T1, T2, T3, …, TN (2) 

where T1 is the initial temperature, TN is the final temperature, N is the number of 
temperatures, and the values of T are chosen following a specific cooling schedule that is 
problem dependent. Please note that T has been defined as a discrete variable because 
usually the temperature does not increase continually.  
To improve the performance of the method of simulated annealing, it is usual to spend some 
time at each temperature by performing a fixed number of iterations before decreasing the 
temperature. Let K be the number of iterations performed at each temperature, then 
Equation (1) can be written as 

 Xi = {x1,i,  x2,i,  x3,i, … , xM,i},      i = 1, 2, 3, … (3) 

where i is the number of perturbations applied to the solution, and x1,i is the value of x1  after 
it is has been perturbed i-times. Thus, at the end of temperature T1, the number of 
perturbations applied to the solution is K, and XK represents the solution at the end of this 
temperature. Usually, each solution Xi must have an error associate with it, let 

 E1, E2, E3, … (4) 

be the errors of X1, X2, X3,… respectively. Generally, a technique to estimate the solution error 
must be defined, but typically this technique is problem dependent and full knowledge of 
the problem is required. Consider for example a problem where five pieces are to be located 
at discrete positions in the plane x-y, and it is desired that each piece meets some 
constraints; without a doubt, the error may be defined as the number of pieces that do not 
meet the constraints. For other optimization problems, the mean squared error may be more 
appropriate; common sense is required as rigid rules do not exists. 
As it can be induced from the previous discussion, there are not regulations that dictate or 
limit simulated annealing implementation. There are, however, some specific criteria about 
how to accept a solution once it has been perturbed. One obvious criterion is to accept a 
solution whenever it has a less error than the previous solution. There is, though, one 
popular algorithm used to manage simulated annealing.  The metropolis algorithm, shown 
in Equation 5, follows the criterion discussed previously, and is typically used in simulated 
annealing to compute the probability of acceptance for a perturbed solution. 

p
e                 E > 0 Δ

1                   0 ≤ΔE

T
k EΔ
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(5) 

where ΔE is the difference between the solution error after it has perturbed, and the  
solution error before it was perturbed, T is the current temperature and k is a suitable 
constant.  A plot of Equation (5) is presented in Figure 2; it can be observed that when ΔE is 
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negative the solution is always accepted.   However, the algorithm may accept a new 
solution even if the solution has not a smaller error than the previous one (a positive ΔE), 
and the probability to do this decreases when the temperature decreases or when ΔE 
increases.  Consequently, at high temperatures the algorithm may wander wildly accepting 
bad solutions; as the temperature decreases, the algorithm is more selective and accepts 
perturbed solutions only when the respective ΔE is small.  This is the theory behind 
simulated annealing and should be clearly understood to properly implement the algorithm. 
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Fig. 2. Probability of acceptance following the Metropolis algorithm 

Consider now Figure 3 which shows the probability of acceptance as a function of ΔE for 
several values of k/T.  From this figure, it can be seen that the constant k plays an important 
role on the algorithm success; if k is equal to T, the algorithm will accept solutions with high 
probability even if ΔE is not small. This is not good as the method will spend great time 
trying with bad solutions; even if an excellent solution is found, the method will easily 
discard it. Generally, a medium ration k/T is desired at the beginning of the process. The 
authors suggest estimating the value of k as a previous step of the annealing process. This 
can save a lot of time, as there is not unique value of k that can be used for all optimization 
problems. 

6. Estimating k 
When an optimization problem is not properly solved using simulated annealing, it may 
sound suitable to increase the number of temperatures and the number of iterations at each 
temperature. Additionally, it may sound logical to start at a high temperature and end with 
a very low final temperature. However, it is most recommended to carefully choose the 
simulated annealing parameters in order to minimize the number of calculations and, 
consequently, reduce the time spend on vain perturbations.  
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Fig. 3. Probability of acceptance for several values of k/T. 

At the beginning of annealing, it is necessary to have an initial solution to start working 
with. Let X0 be the initial solution before applying any perturbation to it, and E0 the error 
associated with X0. Typically, X0 may be created by assigning random values to {x1, x2, x3, 
…,xM}, however, in most cases, it is strongly recommended to use the problem requirements 
to create X0., this will warranty at least a good starting point.   
As it was described before, the constant k plays an important role on simulated annealing 
for global optimization. In this section, the authors suggest a simple method to estimate k 
using the essential operations of simulated annealing (perturb and evaluate). After 
inspecting Equation 9, it is clear that the value of k must be estimated using the initial 
temperate and the delta error. An estimate for ΔE can be computed from 

 ΔE = σE (6) 

which can be estimated as 

Δ ≈ Σ ΣE              E   -                  (E  )  1 1
Q - 1 Q(Q - 1)

2
i ii=1 i=1

Q Q

 
(7) 

that is, the sample variance of E when the solution X0 has been perturbed Q times. In 
practice, Equation 7 is an excellent estimator of the initial value of ΔE as long as Q is at least 
1000 or more. It is important to mention that an exact value of ΔE is not required as this 
value is used only to a get rough estimate of k; this implies that a big value for Q is not 
necessary.  
Once an estimate for the delta error of the solution has been found, finding an estimate for k 
is straightforward as Equation 5 can be directly used to solve for k. However, an initial 
value for the probability of acceptance needs to be defined. It is clear that the initial 
probability of acceptance must not be close to one, neither must be close to zero. A value 
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between 0.7 and 0.9 is recommended. A probability of acceptance bigger than 0.9 has not 
practical purpose as the algorithm will accept too many bad solutions. On the other hand, a 
value that is less than 0.7 will rob the algorithm the opportunity to search abroad, loosing 
one of the main advantages of simulated annealing. In general, an initial value for the 
probability of acceptance should be 0.8.  Thus, an estimate of k can be express as 

E

T   ln (0.8)
k = 0

σ  
(8) 

where an estimate for the standard deviation of the solution error can be computed using 
Equation 7.  The performance of the algorithm is dramatically increased when Equation 8 is 
used because unnecessary and vain perturbations are not computed; instead the algorithm 
uses this precious CPU time on doing actual work. 

7. Implementing simulated annealing 
For now, the reader should have a sense of how simulated annealing works. However, the 
reader may have some doubts on how to implement it. As it was established before, 
common sense is required for proper implementation of the algorithm as there are not hard 
rules. This section describes how to use a programming language to correctly implement 
simulated annealing. Figure 4 shows the UML diagram for a class to implement simulated 
annealing. At the top of the diagram the class name (SimulatedAnnealing) is shown, the 
second block contains the member variables and the third block the member functions. The 
member variables' names are self explanatory. However, note that k and finalTemp are 
declared as private as the class itself will compute these values from the other setup 
parameters. The only public function is Start, it should be called once we are ready to start 
the annealing process.  
 

+SimulatedAnnealing()
+~SimulatedAnnealing()
+Start(Solution& solution, Solution& wk1, Solution& wk2, double goal) : double
-GetTemperature(int index) : double
-IsAcceptedByMetropolis(double temperature, double deltaError) : bool
-Anneal(Solution& solution, Solution& wk1, Solution& wk2, double goal) : double
-EstimateK(Solution& solution, int N) : double

SimulatedAnnealing

+numTemps : int
+numIterations : int
+initialTemp : double
-finalTemp : double
+isCoolingScheduleLinear : bool
+cycles : int
-k : double

 
Fig. 4. UML diagram for a class to implement simulated annealing. 
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The class of Figure 4 makes reference to the abstract class Solution depicted in Figure 5.  The 
class Solution contains the actual implementation of the problem that maps the real problem 
to the solution coding.  Figure 5 describes two classes:  Solution at the top and NumEq at the 
bottom. The class NumEq will be discussed on the next section, for now, just note that 
NumEq implements the pure abstract functions of the class Solution: operator=, 
OnInitialize, OnPerturb and OnComputeError.  These are the four functions that need to be 
implemented to solve a global optimization problem by simulated annealing. Note that 
these functions corresponds to the basic operations required by annealing (perturb and 
evaluate) plus two extra more: OnInitialize to initialize the solution, and the operator= that 
is useful whenever a solution needs to be copied from one variable to another one. It is 
important to mention that for some optimization problems, it may be inefficient to 
implement the operator= as this operator consumes a considerable amount of CPU time; for 
this cases other techniques to store and manipulate the solution may be used. 
 

Solution

+Solution()
+~Solution()
+Initialize() : double
+Perturb(temperature : double, initialTemperature double) : double
+GetError() : double
+operator=(init : const Solution&) : Solution&
-OnInitialize()
-OnPertub(temperature : double, initialTemperature : double)
-OnComputeError() double

#error : double

NumEq

+NumEq()
+~NumEq()
+operator=(init : const Solution&) : Solution&
-OnInitialize()
-OnPertub(temperature : double, initialTemperature : double)
-OnComputeError() double

+ x : double
+ y : double

 
Fig. 5. UML diagram of a class to implement the solution of an optimization problem. 

Figure 6 and 7 show a typical implementation using the C++ language for the Simulated 
Annealing class. The class may be implemented in others programming languages such as 
Java or C# with minor changes. Let now discuss briefly the implementation of this class. 
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There are several private functions on this class and are used only by the class itself. The 
function GetTemperature() is called every time the temperatures changes, its 
implementation is straightforward once the cooling scheduled has been defined; on the 
shown code there are two cooling schedules: exponential and linear. The function 
IsAcceptedByMetropolis() implements the metropolis algorithm of Equation 5, returns true 
when the perturbed solution must be accepted, and returns false otherwise. The function 
EstimateK() implements Equation 8. All the magic of the process is implemented in the 
function Anneal(), which is called several times if temperature cycling is used (i.e., the 
variable 'cycles' has a value bigger than one). 
To use the SimulatedAnnealing class described, the function Start() must be called, this 
function requires three variables of the class Solution, namely 'solution', 'wk1' and 'wk2' 
('solution' is the variable where the actual solution is stored; 'wk1' and 'wk2' are working 
solutions to perform the annealing process.) In the next section, it will be discussed how to 
use the SimulatedAnnealing class to solve a simple optimization problem. 
 

SimulatedAnnealing.h 
#pragma once 
#include "Solution.h" 
class SimulatedAnnealing 
{ 
public: 
 SimulatedAnnealing(void); 
 ~SimulatedAnnealing(void); 
 int numTemps; 
 int numIterations; 
 double initialTemp; 
 bool isCoolingScheduleLinear; 
 int cycles; 
 double Start(Solution& solution, Solution& wk1, Solution& wk2, double goal); 
private: 
 double GetTemperature(int index); 
 bool IsAcceptedByMetropolis(double temperature, double deltaError); 
 double Anneal(Solution& solution, Solution& wk1, Solution& wk2, double goal); 
 double EstimateK(Solution& solution, int N); 
 double finalTemp; 
 double k; 
}; 

Fig. 6. Header file using C++ to implement the SimulatedAnnealing class of Figure 4. 
 

SimulatedAnnealing.cpp 
 
#include "SimulatedAnnealing.h" 
SimulatedAnnealing::SimulatedAnnealing(void) 
{ 
 numTemps=100; 
 numIterations=100; 
 initialTemp=100.0; 
 finalTemp=0.0001; 
 isCoolingScheduleLinear=false; 
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 k = 10; 
 cycles = 4; 
} 
 
SimulatedAnnealing::~SimulatedAnnealing(void) 
{ 
} 
 
double SimulatedAnnealing::Start(Solution& solution, Solution& wk1, Solution& wk2, double 
goal) 
{ 
 for(int i=0; i<cycles; i++) 
 { 
  if (Anneal(solution, wk1, wk2, goal)<=goal) break; 
 } 
 return solution.GetError(); 
} 
 
double SimulatedAnnealing::EstimateK(Solution& solution, int N) 
{ 
 double E = 1.0; 
 double sum = 0.0; 
 double sums = 0.0; 
 
 for(int i = 0; i<N; i++) 
 { 
  E = solution.Perturb(initialTemp, initialTemp); 
  sum+=E; 
  sums+=(E*E); 
 } 
 double variance  = sums/(N-1) - (sum*sum)/(N*(N-1)); 
 return -log(0.8)*initialTemp/sqrt(variance); 
} 
 
double SimulatedAnnealing::Anneal(Solution& solution, Solution& wk1, Solution& wk2, double 
goal) 
{ 
 double error = solution.Initialize(); 
 if (error<=goal) return error; //We are alredy done. Unlikely! 
 k = EstimateK(solution, 1000); 
 wk1 = solution; 
 wk2 = solution; 
  
 finalTemp = goal; 
 // 
 bool hasImproved = false; 
 double temperature, deltaError; 
 int i; 
 
 for (int n=0; n<numTemps; n++)  
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 {   
  temperature = GetTemperature(n); 
  hasImproved = false;  
  //_________________________________________ Iterate at this temperature 
  for (i=0; i<numIterations; i++) 
  {  
   deltaError = wk1.Perturb(temperature, initialTemp) - error; 
   if (IsAcceptedByMetropolis(temperature, deltaError)) 
   {        
    wk2 = wk1; 
    hasImproved = true;    
    if (work1.GetError()<=goal) break; 
   }                                
  } 
  if (hasImproved==true) // If saw improvement at this temperature  
  {   
   wk1 = wk2; 
   solution = wk2; 
   error = solution.GetError(); 
   if (error<=goal) break; 
  } 
 }  
 return solution.GetError(); 
} 
 
bool SimulatedAnnealing::IsAcceptedByMetropolis(double temperature, double deltaError) 
{ 
 if (deltaError=<0) return true; 
 return Random(0.0, 1.0) < exp(-k*deltaError/temperature); 
} 
 
double SimulatedAnnealing::GetTemperature(int index) 
{ 
 if (isCoolingScheduleLinear) 
 { 
  return initialTemp+index*(finalTemp-initialTemp) / (numTemps-1); 
 } 
 else 
 { 
  return initialTemp*exp(index * log(finalTemp/initialTemp) / (numTemps-1)); 
 } 
} 
 

Fig. 7. Source file using C++ to implement the SimulatedAnnealing class of Figure 4. 

Figure 8 shows the header file for the Solution class using C++, Figure 9 shows the 
respective source file. As it can be seen from these figures, the Solution class is abstract as it 
has four abstract functions. Consequently, to create an object from the Solution class, a new 
derived class must be created and must implement: the operator=, OnInitialize(), 
OnPerturb() and OnComputeError(). Observe carefully the implementation of this class; 
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note that some functions are designed by pairs.  For example, Perturb() calls internally the 
functions OnPeturb() and OnComputeError().  Similarly, Initialize() calls the functions 
OnInitialize() and OnComputeError().  As it will be seen in the next section using the 
Solution class to solve an optimization problem is pretty simple. 
 

Solution.h 
 
#pragma once 
 
class Solution 
{ 
public: 
 Solution(void); 
 ~Solution(void); 
 double Initialize(void); 
 double Perturb(double temperature, double initialTemperature); 
 double GetError(void); 
 virtual Solution& operator =(const Solution& init) = 0; 
protected: 
 double error; 
private: 
 virtual void OnInitialize(void)=0; 
 virtual void OnPerturb(double temperature, double initialTemperature)=0; 
 virtual double OnComputeError(void)=0; 
}; 

Fig. 8. UML diagram for a class to implement the solution. 

Solution.cpp 
 
#include "Solution.h" 
 
Solution::Solution(void) 
{ 
 error = 1.0; 
} 
 
Solution::~Solution(void) 
{ 
} 
 
double Solution::GetError(void) 
{ 
 return error; 
} 
 
double Solution::Initialize(void) 
{ 
 OnInitialize(); 
 error = fabs(OnComputeError()); 
 return error; 
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} 
 
double Solution::Perturb(double temperature, double initialTemperature) 
{ 
 OnPerturb(temperature, initialTemperature); 
 error = fabs(OnComputeError()); 
 return error; 
} 

Fig. 9. UML diagram for a class to implement the solution. 

8. Numerical example 

Simulated annealing can be used to solve a broad range of optimization problems in 
artificial intelligence and other areas. However, it would be inappropriate to solve a 
complex problem to illustrate how to use simulated annealing. Thus, the two variable 
function of Equation 9 will be use for instructive purposes. Note that other optimization 
methods are more appropriate to solve this second order equation, and this section is only 
trying to set the basics for proper use of simulated annealing. 

 f(x, y) = x2 + y2 + 5xy – 4 (9) 

To get a better sense of the behavior of Equation 9, Figure 10 shows a plot of this equation.  
Let suppose that the goal is to find the values of x and y that minimize f(x, y).  Clearly the 
solution is any point (x, y) that lies on the circle that intersects f(x, y) with the plane z = 0.   
Observe that simulated annealing is generally used when the solution has many variables, 
and finding or visualizing the solutions in these cases is much more difficult than 
interpreting the 3-D plot of Figure 10.   
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Fig. 10. A plot of Equation 9 as a function of x and y. 
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Consider Figure 11 that shows how simulated annealing works. At the beginning of the 
process the temperature is high (approximately 40 degrees in the figure) and the solution is 
perturbed so that it may lie on any of the points inside the dark circle. As the temperature 
decreases, the perturbation amount is reduced and the circle radius also decreases.  At this 
temperature, the algorithm refines the quality of the solution previously found; note that 
solutions with high errors are not longer accepted (only solutions that reduce the error are 
accepted.) In other words, at low temperatures the algorithm moves the error down when 
the error is plot against x and y.  Observe that the same number of iterations is used at each 
temperature while the exploring area is reduced; this increases the likelihood of finding the 
minimum.   
Monitoring the progress of the process is important. For example, if the algorithm is not 
close to the minimum by the time the temperature has decreased considerably; simulated 
annealing will likely fail as the exploring area will be relatively too small.  If this happens, it 
is better to restart the algorithm instead of performing useless iterations. One quick solution 
would be to increase the number of temperatures. Some will argue that the number of 
iterations should also be increased; however, it is important to note that it is not good idea 
to spend a lot of time at each temperature as the probability of acceptance will not change, if 
the temperature does not change either. Alternatively, if the temperature decreases slowly, 
the probability of the acceptance will gradually reduce, and the likelihood to accept a bad 
solution will be reduced as well. 
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Fig. 11. Exploring area (represented as a gray circle) at each temperature. 
Once a global view about how to minimize Equation 9, through the use of simulated 
annealing, has been presented, let actually show how to solve this particular problem.  First, 
a new class derived from Solution must de created. Figure 12 and 13 show the header and 
source file for the class NumEq that is used to solve Equation 9; the respective UML 
diagram is shown at the bottom of Figure 5. Note that for this specific optimization problem, 
there are two variables of type double to store the solution 'NumEq.x' and 'NumEq.y'. The 
realization of the function OnComputeError() is straightforward as it directly implements 
Equation 9. The implementation of the function OnInitialize() is simple; it only assigns 
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random values between -10 and 10 to 'x' and 'y'. For other optimization problems, it is 
important to use common sense to implement the function OnInitialize(); if the problem 
does not provide enough information to do this, at least a valid initial value must be used.   
Let know discuss the function Pertub() which is used to perturb the solution.  
Unfortunately, there are several ways to perturb a solution. It is recommended to try first 
the simplest way to perturb the solution; if this does not work, more sophisticate 
perturbation techniques may be used. Additionally, some practitioners prefer to perturb the 
solution a lot a high temperatures and reduce the degree the perturbation as the 
temperature decreases, this is what it is used on the example shown. However, it is 
important to mention that in some cases it is not possible to control the amount of 
perturbation, and for these cases the function Perturb() always applies the same amount of 
perturbation for each temperature.   
By observing the function Perturb() in Figure 13, it can be observed that to perturb the 
solution, the value of 'x' is added to a random value which maximum amplitude is 
proportional to the current temperature. This method works really well, however, this 
approach may shift the solution too much, and 'x' may end in a region of invalid values. To 
alleviate this problem, an easy practice is to clip the solution values after perturbing.  
Alternatively, Figure 14 shows another way to perturb the solution; first a perturbation ratio 
is computed, then the new value of the variable is obtained by adding a proportional part of 
the old value plus a random variable; this method does not require clipping as the 
perturbation applied is blended naturally with the previous solution value. The authors 
have seen no evidence that one method is better than the other. However, it is important to 
note that when using the second method, the initial temperature is used only to compute the 
perturbation ratio and its value is not critical. Before leaving the discussion about how to 
implement the function Perturb(), please note that this function was specifically 
implemented using the knowledge that the values of 'x' and 'y' were in range from -10 to 10; 
other optimization problems may require a different implementation for this function. 
The last function to discus is the operator=() which is used to copy a solution to another 
variable. This function must simply copy the solution variables from the source to the 
destination, specifically the variables: 'x', 'y' and 'error' in Figure 13. 
 

NumEq.h 
 
#pragma once 
#include "Solution.h" 
 
class NumEq : public Solution 
{ 
public: 
 NumEq(void); 
 ~NumEq(void); 
 double x, y; 
 Solution& operator =(const Solution& init); 
private: 
 void OnInitialize(void); 
 void OnPerturb(double temperature, double initialTemperature); 
 double OnComputeError(void); 
}; 

Fig. 12. Header file of the class NumEq to solve Equation 9. 
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NumEq.cpp 
#include "NumEq.h" 
 
NumEq::NumEq(void) 
{ 
} 
 
NumEq::~NumEq(void) 
{ 
} 
 
Solution& NumEq::operator =(const Solution& init) 
{ 
 NumEq& eqInit = (NumEq&)init; 
 x = eqInit.x; 
 y = eqInit.y; 
 error = eqInit.error; 
 return *this; 
} 
 
void NumEq::OnInitialize(void) 
{ 
 x = Random(-10.0, 10.0); 
 y = Random(-10.0, 10.0); 
} 
 
void NumEq::OnPerturb(double temperature, double initialTemperature) 
{ 
 x = x + Random(-temperature, temperature); 
 y = y + Random(-temperature, temperature); 
 //______________ Clip values to avoid wandering too far 
 if (x>10.0) x = 10.0; 
 if (x<-10.0) x = -10.0; 
 if (y>10.0) y = 10.0; 
 if (y<-10.0) y = -10.0; 
} 
 
double NumEq::OnComputeError(void) 
{ 
 return x*x+y*y+5.0*x*y-4.0; 
} 

Fig. 13. Source file of the class NumEq to solve Equation 9. 

void NumEq::OnPerturb(double temperature, double initialTemperature) 
{ 
 const double ratio = temperature/initialTemperature; 
 x = (1.0 - ratio)*x + ratio*Random(-10.0, 10.0); 
 y = (1.0 - ratio)*y + ratio*Random(-10.0, 10.0); 
} 

Fig. 14. Alternative method to perturb the solution. 
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Once a new class has been derived from Solution, it is possible to use the new class to solve 
the optimization problem of Equation 9. Figure 15 shows the actual code for the main 
function to do this.  First, three variables of type NumEq are created; the variable 'solution' 
is where the final solution will be stored; 'wk1' and 'wk2' are working solutions. Next, a 
variable of type SimulatedAnnealing is created and configured, here, other configuration 
parameters may be set.  The shown code sets only the initial temperature and the number of 
temperatures. Finally, the annealing process starts by calling the function Start(), and at the 
end, the values of 'x' and 'y' (which are the solution) are displayed.  
 

Example.cpp 
 
#include "SimulatedAnnealing.h" 
#include "NumEq.h" 
 
int _tmain(int argc, _TCHAR* argv[]) 
{ 
 NumEq solution, wk1, wk2; 
 SimulatedAnnealing sa; 
 sa.initialTemp = 10; 
 sa.numTemps = 2500; 
 cout<<"\r\nError = "<<sa.Start(solution, wk1, wk2, 0.00001); 
 cout<<"\r\nx = "<<solution.x; 
 cout<<"\r\ny = "<<solution.y; 
 return 0; 
} 
 

Fig. 15. Main function to solve the problem of Equation 9. 

Before moving into the next section, note that the classes SimulatedAnnealing and Solution 
are generics and can be used to solve any global optimization problem by simulated 
annealing. 

9. Solving problems using simulated annealing 
9.1 The traveling salesman problem 
The traveling salesman problem is a classical problem in artificial intelligence, where a seller 
has to visit N cities that are located at given positions, and finally he has to return to his city 
of origin (Press et al., 2002).  For this problem, each city has to be visited only once and the 
resulting path should be as short as possible.  Press et al. shows actual code using the C++ 
language to solve this problem and provides several tips worth trying to set the parameters 
of the algorithm. There, the problem is solved using the two basic operations described in 
this chapter: perturb and evaluate. The operation of perturb is performed by using two 
different type of perturbations. To evaluate the quality of the solution the path length is 
used.  Press et al. ends the subject of simulated annealing by introducing a hybrid algorithm 
using the downhill simplex method.   

9.2 The N-Queens problem 
The N-Queens problem is a famous problem that has been attacked by a wide variety of 
search algorithms (Jones, 2005). It is defined as the placement of N queens on an N-by-N 
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board such that no queen threatens any other queen using the standard rules of chess. This 
problem may be planned and solved by simulated annealing (Jones, 2005). The method used 
by Jones is similar to the method proposed here; however, our method is object-oriented 
and promotes code reuse.   

9.3 Artificial neural network training 
In (Masters, 1993), it is suggested to use simulated annealing for neural network training.  
Masters suggest a hybrid algorithm that combines simulated annealing with typical 
gradient based algorithms.  Simulated is used only for initialization, and gradient based 
algorithms are used to refine the quality of the solution. Additionally, Masters suggest using 
simulated annealing in combination with other deterministic methods, for example 
regression to estimate the output weights of a neural network and perturb only the hidden 
weights.  For artificial neural network training the implementation of simulated annealing 
requires a good random number generator, see (Press et al., 2002) to see code to implement 
such type of generators. The authors have suggested simulated annealing using temperature 
cycling for neural network training (Ledesma et al., 2007).   
The free software Neural Lab is a powerful tool to simulate artificial neural networks, and it 
can be downloaded from http://www.fimee.ugto.mx/profesores/sledesma/. Neural Lab 
implements simulated annealing for neural network training using temperature cycling and 
several hybrid algorithms. 

10. Conclusions 
Simulated annealing is a powerful algorithm to solve global optimization problems. It has 
been successfully used in artificial intelligence (Russel & Norvig, 2002), and real life 
problems that do no have an appropriate model. There are still many aspects of simulated 
annealing open for research, including how to reduce the running time of the algorithm, 
how to optimize the cooling schedule and how to adapt the algorithm as the temperature 
and error change. The authors have presented several practical considerations that will help 
the reader to use simulated annealing to solve real life problems. 
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