SIMULATED ANNEALING

SIMULATED ANNEALING

EDITED BY

CHER MING TAN

I-Tech

Published by In-Teh

In-Teh is Croatian branch of I-Tech Education and Publishing KG, Vienna, Austria.

Abstracting and non-profit use of the material is permitted with credit to the source. Statements and
opinions expressed in the chapters are these of the individual contributors and not necessarily those of
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or
property arising out of the use of any materials, instructions, methods or ideas contained inside. After
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in
any publication of which they are an author or editor, and the make other personal use of the work.

© 2008 In-teh

www.in-teh.org

Additional copies can be obtained from:
publication@ars-journal.com

First published September 2008
Printed in Croatia

A catalogue record for this book is available from the University Library Rijeka under no. 111224063
Simulated Annealing, Edited by Cher Ming Tan
p. cm.
ISBN 978-953-7619-07-7
1. Simulated Annealing. Cher Ming Tan

Preface

Optimization is important in all branches of engineering due to limited resources
available. Through optimization, maximum usage of the resource can be achieved.
However, global optimization can be difficult due to the requirement of the knowledge of
the system behavior under analysis and the possible large solution space. Without this
knowledge, the optimization thus obtained may only be a local optimization. Metaheuristic
algorithms, on the other hand, are effective in exploring the solution space. Often, they are
referred to as “black box” algorithms as they use very limited knowledge about the specific
system to be tackled, and often it does not require a mathematical model of the system
under study. Hence it can be used to solve a broad range of problem, and has thus receiving
increasing attention.

One of the commonly used metaheuristic algorithms is the Simulated Annealing (SA).
SA is an optimization algorithm that is not fool by false minima and is easy to implement. It
is also superior as compared to many other metaheuristic algorithms as presented in this
book. In this book, the different applications of the Simulated Annealing will be presented.
The first 11 chapters are devoted to the applications in Industrial engineering such as the
scheduling problem, decision making, allocation problem, routing problem and general
optimization problem.

The subsequent chapters of this book will focus on the application of the Simulated
Annealing in Material Engineering on porous material study, Electrical Engineering on
integrated circuit technology, Mechanical Engineering on mechanical structure design,
Structural Engineering on concrete structures, Computer Engineering on task mapping and
Bio-engineering on protein structure. The last three Chapters will be on the methodology to
optimize the Simulated Annealing, its comparison with other metaheuristic algorithms and
the various practical considerations in the application of Simulated Annealing.

This book provides the readers with the knowledge of Simulated Annealing and its vast
applications in the various branches of engineering. We encourage readers to explore the
application of Simulated Annealing in their work for the task of optimization.

Editor

Cher Ming Tan
Nanyang Technological University
Singapore

Contents

Preface \%

Simulated Annealing as an Intensification Component in Hybrid 001
Population-Based Metaheuristics
Davide Anghinolfi and Massimo Paolucci

Multi-objective Simulated Annealing for a Maintenance Workforce 027
Scheduling Problem: A case Study
Nima Safaei, Dragan Banjevic and Andrew K.S. Jardine

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 049
Michael Andresen, Heidemarie Bréasel, Mathias Plauschin and Frank Werner

Real Time Multiagent Decision Making by Simulated Annealing 077
Dawei Jiang and Jingyu Han

Learning FCM with Simulated Annealing 089
M.Ghazanfari and S. Alizadeh

Knowledge-Informed Simulated Annealing for Spatial Allocation 105
Problems
Jiunn-Der Duh

An Efficient Quasi-Human Heuristic Algorithm for 119
Solving the Rectangle-Packing Problem
Wenqi Huang and Duanbing Chen

Application of Simulated Annealing to Routing Problems in City Logistics 131
Hisafumi Kokubugata and Hironao Kawashima

Theory and Applications of Simulated Annealing for 155
Nonlinear Constrained Optimization
Benjamin W. Wah, Yixin Chen and Tao Wang

Vil

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Annealing Stochastic Approximation Monte Carlo for Global Optimization
Faming Liang

Application of Simulated Annealing on the Study of Multiphase Systems

Maurice G. Politis, Michael E. Kainourgiakis, Eustathios S. Kikkinides
and Athanasios K. Stubos

Simulated Annealing for Mixture Distribution Analysis and its Applications
to

Reliability Testing

Cher Ming Tan and Nagarajan Raghavan

Reticle Floorplanning and Simulated Wafer Dicing for Multiple-project
Wafers

by Simulated Annealing

Rung-Bin Lin, Meng-Chiou Wu and Shih-Cheng Tsai

Structural Optimization Using Simulated Annealing
Fazil O. Sonmez

Optimization of Reinforced Concrete Structures by Simulated Annealing

F. Gonzalez-Vidosa, V. Yepes, J. Alcala, M. Carrera, C. Perea and I. Paya-
Zaforteza

Best Practices for Simulated Annealing in Multiprocessor Task
Distribution Problems
Heikki Orsila, Erno Salminen and Timo D. Hémél&inen

Simulated Annealing of Two Electron Density Solution Systems

Mario de Oliveira Neto, Ronaldo Luiz Alonso, Fabio Lima Leite, Osvaldo N.
Oliveira Jr, Igor Polikarpov and Yvonne Primerano Mascarenhas

Improving the Neighborhood Selection Strategy in Simulated Annealing
using the Optimal Stopping Problem
Saed Alizamir, Steffen Rebennack and Panos M. Pardalos

A Comparison of Simulated Annealing, Elliptic and Genetic Algorithms
for Finding Irregularly Shaped Spatial Clusters

Luiz Duczmal, André L. F. Cangado, Ricardo H. C. Takahashi and Lupércio F.
Bessegato

Practical Considerations for Simulated Annealing Implementation
Sergio Ledesma, Gabriel Avifia and Raul Sanchez

187

207

227

257

281

307

321

343

363

383

401

Simulated Annealing as an Intensification
Component in Hybrid Population-Based
Metaheuristics

Davide Anghinolfi and Massimo Paolucci

Department of Communication, Computer and Systems Sciences
University of Genova

Italy

1. Introduction

The use of hybrid metaheuristics applied to combinatorial optimization problems received a
continuously increasing attention in the literature. Metaheuristic algorithms differ from
most of the classical optimization techniques since they aim at defining effective general
purpose methods to explore the solution space, avoiding to tailor them on the specific
problem at hand. Often metaheuristics are referred to as “black-box” algorithms as they use
limited knowledge about the specific problem to be tackled, instead usually taking
inspiration from concepts and behaviours far from the optimization field. This is exactly the
case of metaheuristics like simulated annealing (SA), genetic algorithm (GA), ant colony
optimization (ACO) or particle swarm optimization (PSO). Metaheuristics are based on a
subset of features (e.g., the use of exploration history as short or long term memory, that of
learning mechanisms or of candidate solution generation techniques) that represent a
general algorithm fingerprint which usually can be easily adapted to face different complex
real world problems. The effectiveness of any metaheuristic applied to a specific
combinatorial problem may depend on a number of factors: most of the time no single
dominating algorithm can be identified but several distinct mechanisms exploited by
different metaheuristics appear to be profitable for searching high quality solutions. For this
reason a growing number of metaheuristic approaches to combinatorial problems try to put
together several techniques and concepts from different methods in order to design new and
highly effective algorithms. Hybrid approaches in fact usually seem both to combine
complementary strengths and to overcome the drawbacks of single methods by embedding
in them one or more steps based on different techniques. As an example, in (Anghinolfi &
Paolucci, 2007a) the SA probabilistic candidate solution acceptance rule is coupled with the
tabu list and neighbourhood change mechanisms respectively characterizing tabu search
(TS) and variable neighbourhood search (VNS) approaches to face parallel machine total
tardiness scheduling problems. Several surveys exist proposing both classifications of
metaheuristics and unified views of hybrid metaheuristics (e.g., (Blum & Roli, 2003),
(Doerner et al., 2007), (Raidl, 2006) and (Talbi, 2002)). We would avoid to replicate here the
various definitions and classifications through which the different approaches can be
analysed and organized (the interested reader can for example refer to (Blum & Roli, 2003)

2 Simulated Annealing

for a valuable review). However, we should underline few basic concepts that allow us to
focus on the different characteristics of the kinds of methods used in the hybrid algorithms
presented in this chapter. SA, ACO and PSO are all stochastic algorithms, but SA is
commonly classified as a trajectory-based method since it determines at each iteration a new
single current solution, whereas ACO and PSO are population-based methods since they
explore at each iteration a set of distinct solutions which they make evolve iteration after
iteration. The concept behind these two population-based methods is that the overall
exploration process can be improved by learning from the single exploring experiences of a
population of very simple agents (the ants or the particles). As will be cleared in the
following of the chapter, ACO explicitly exploits a learning mechanism in order to identify,
iteration after iteration, which features should characterize good, i.e., the most promising,
solutions. If in ACO the communication among the exploring agents (the ants) is indirect,
PSO, on the other hand, drives the search of the population of agents (the swarm of
particles) on the basis of simple pieces of information (e.g., where the current best is
located), making the agents moving towards promising solutions. Therefore, both ACO and
PSO use memory structures, more complex in ACO, simpler in PSO, to elaborate their
exploration strategies; agents in ACO and PSO perform a learning or information driven
sampling of the solution space that could in general be considered wide but also quite
coarse, and that can be trapped in local optima (the so-called stagnation (Dorigo & Stutzle,
2004)). SA, on the other hand, is a memoryless method which combines the local search
aptitude of exploring in depth regions in the solution space with the ability, ruled by the
cooling schedule mechanism, of escaping from local optima. From this brief overview the
possible advantage of coupling the different complementary abilities of the two types of
metaheuristics should begin to emerge. Therefore in this chapter our purpose is to focus the
attention on hybrid population-based metaheuristic algorithms with a specific reference to
the use of SA as a hybridizing component. Then, according to the classification proposed in
(Raidl, 2006), the kind of hybrid algorithms here considered result from the combination of
two distinct metaheuristics (the “what is hybridized” aspect) among which a low-level
strong coupling is established (the “level of hybridization” aspect), in particular the
execution of SA is interleaved with the iterations of the population-based metaheuristics
(the “order of execution” aspect) so that SA can be viewed as an integrated component of
these latter (the “control strategy” aspect).

Several works recently appeared in the literature show the interest of embedding SA into
population-based approaches as ACO, PSO and GA. Examples of PSO hybridized by
incorporating SA intensification can be found in (Liu et al., 2008), where the proposed
hybrid PSO (HPSO), which includes a probabilistically applied local search (LS) and a
learning-guided multi-neighbourhood SA, is applied to makespan minimization in a
permutation flow shop scheduling problem with the limited buffers between consecutive
machines; in (He & Wang, 2007), where constrained optimization problems are faced by a
HPSO which applies the SA search from the best solution found by the swarm in order to
avoid the premature convergence; in (Li et al., 2006), where the hybrid algorithm, named
PSOSA, is used for non-linear systems parameter estimation; in (Ge et al., 2007) where the
HPSO is used to face the job shop scheduling. Differently, in (Xia & Wu, 2005) multi-
objective flexible job shop scheduling problems are confronted by a hierarchical approach
exploiting PSO to assign operations to machines and then SA to schedule operations on each
machine. Hybrid ACO approaches, which combine pheromone trail based learning

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics 3

mechanism with the SA search ability of escaping from local optima, are proposed for
example in (Demirel & Toksary, 2006) for the quadratic assignment problem and in
(Yuanjing & Zuren, 2004) for flow-shop scheduling problems. Finally, in (Yogeswaran et al.,
2007) a hybrid metaheuristic named GASA, which combines GA and SA, is used to solve a
bi-criterion machine loading problem in flexible manufacturing system.

In this chapter we would highlight the effectiveness of embedding a trajectory method, i.e.,
SA, as intensification method of population-based algorithms, i.e., ACO and PSO. Many
works in the literature witnessed the fundamental role for population-based approaches, as
ACO, PSO or GA, of an intensification phase which usually corresponds to a local search
(LS) exploration (Blum & Roli, 2003). However, a well-known and common characteristic of
trajectory methods, as SA, VNS or TS, is their ability of overcoming the LS limitation of
being trapped in local optima. For this reason the role of this class of powerful methods goes
beyond that of a local intensification procedure, since they allow the calling population-
based method to be “re-directed” towards portions of the solution space which may not be
confined to the basin of attraction of a local optimizer. Then, we can view the hybrid
algorithms discussed in this chapter as composed by a main population-based component
which exploits a second level subordinate SA procedure in order to deeply explore
(intensify) the neighbourhood of one (or more) promising solution, as well as escaping from
such a neighbourhood when it includes a local optima attractor (diversify). On a symmetric
standpoint, we could also consider these hybrid metaheuristics as an iterated trajectory
method, i.e. an iterated SA, whose (promising) starting solutions are determined at the
beginning of each iteration by a population-based algorithm. This latter algorithm in fact,
exploiting memory and/or learning mechanisms, performs a sort of solution perturbation or
shaking, possibly driving the SA search to focus on alternative promising regions of the
solution space. In this case we can consider the population-based algorithm as an effective
memory and learning based diversification device for SA. Whatever standpoint one would
prefer, we believe that the effectiveness of the overall resulting algorithm emerges from the
interaction of the complementary capabilities of the methods of the two different classes,
that is, according to (He & Wang, 2007), from the balance of the intensification and
diversification components included in them. An important aspect to be taken into account
when designing the interaction mechanism between the population-based and the trajectory
(i.e., SA) components of the hybrid algorithm regards how to identify the solutions which
are worth to intensify; therefore in this chapter, we will also discuss several alternative
strategies available to this end, pointing out their possible different effectiveness and
computational burden.

The rest of this chapter is organized as follows. First in the Section 2 we briefly present the
two scheduling problems used as reference to analyse the behaviour of the hybrid
metaheuristics. Note that, even if different, the solutions of these two problems share the
common property of being represented by sequences of jobs, i.e., by permutations of a given
number of integers. Then in the Section 3 we illustrate the two hybrid metaheuristics
considered, first introducing the main features of the pure population-based metaheuristics,
respectively ACO and PSO, then showing how these are combined with SA, as well as
discussing alternative triggering rules that can be used to determine the SA starting
solutions. In the Section 4 we report the experimental test performed, comparing the
obtained results with the ones of other algorithms from the literature. Finally, in the Section
5 we draw the chapter conclusions.

4 Simulated Annealing

2. The referenced scheduling problems

In this section we briefly introduce the characteristics of the two scheduling problems faced
by the two hybrid metaheuristics presented in the following, reporting also some literature
review for them. These problems are the Single Machine Total Weighted Tardiness with
Sequence-Dependent Setups (STWTSDS) problem and the Permutation Flowshop
Scheduling (PFS) problem. Even if apparently different, the solutions to such problems have
a common structure since they can both represented by permutation. For this reason, we
introduced here some common notation. In general a solution x to one of the two scheduling
problems involving a set of n jobs can be represented by a permutation or sequence
o(x)=([1],..., [n]), where [j] indicates the index of the job sequenced in the j-th place. In
addition we denote with ¢{1,..., n}—{1,..., n}, the mapping between the places in a sequence
oand the indexes of the sequenced jobs; for example, if job j is sequenced in the h-th place of
o we have j=¢, (h).

2.1 The single machine total weighted tardiness problem with sequence-dependent
setups

The STWTSDS problem consists in scheduling n independent jobs on a single machine. All
the jobs are released simultaneously, i.e., they are ready at time zero, the machine is
continuously available and it can process only one job at a time. For each job j=1,..., n, the
following quantities are given: a processing time p; a due date d; and a weight w;. A
sequence-dependent setup time s; must be waited before starting the processing of job j if it
is immediately sequenced after job i. Setup operations are necessary to prepare production
resources (e.g., machines) for the job to be executed next, and whenever they depend, as in
this case, on the (type of) preceding job just completed they are called sequence-dependent
setups. The tardiness of a job j is defined as Tj=max(0, Cj-d;), being C; the job j completion
time. The scheduling objective is the minimization of the total weighted tardiness expressed

as z;:] w.T, . This problem, denoted as 1/s;;/Zw;Tj, is strongly NP-hard since it is a special

case of the 1//Zw;T; that has been proven to be strongly NP-hard in (Lawler, 1997) (note
that also the 1//XT; special case is still NP-hard (Du & Leung, 1990)). Apart from its
complexity, the choice of the STWTSDS as reference problem is also motivated by its
relevance for manufacturing industries; in particular, the importance of performance criteria
involving due dates, such as (weighted) total tardiness or total earliness and tardiness (E-T),
as well as the explicit consideration of sequence-dependent setups, has been widely
recognized in many real industrial contexts. In the literature both exact algorithms and
heuristic algorithms have been proposed for the STWTSDS problem or for a slightly
different version disregarding the job weights. However, since only instances of small
dimensions can be solved by exact approaches, recent research efforts have been focused on
the design of heuristics. The apparent tardiness cost with setups (ATCS) heuristic (Lee et al.,
1997) is currently the best constructive approach for the STWTSDS problem. However,
constructive heuristics, even if requiring smaller computational efforts, are generally
outperformed by improvement, i.e., local search, and metaheuristics approaches. The
effectiveness of stochastic search procedures for the STWTSDS is shown in (Cicirello &
Smith, 2005), where the authors compare a value-biased stochastic sampling (VBSS), a VBSS
with hill-climbing (VBSS-HC) and a simulated annealing (SA), to limited discrepancy search
(LDS) and heuristic-biased stochastic sampling (HBSS) on a 120 benchmark problem

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics 5

instances for the STWTSDS problem defined by Cicirello in (Cicirello, 2003). The literature
about applications of metaheuristics to scheduling is quite extended. In (Liao & Juan, 2007)
an ACO algorithm for the STWTSDS is proposed, which is able to improve about 86% of the
best known results for the Cicirello’s benchmark previously found by stochastic search
procedures in (Cicirello & Smith, 2005) Recently the Cicirello’s best known solutions have
been further independently improved in (Cicirello, 2006) by means of a GA approach, in
(Lin & Ying, 2006) with three SA, GA and TS algorithms, in (Anghinolfi & Paolucci, 2008)
using an ACO approach and in (Anghinolfi & Paolucci, 2007b) with PSO.

2.2 The permutation flowshop scheduling problem

The PFS problem requires to schedule a set of 7 jobs on a set of m machines so that each job
is processed by each machine and the sequence of jobs is the same for all the machines.
Then, a permutation of the n jobs identifies a solution to the PFS problem which consists in
finding an optimal permutation for the jobs. For each job j and machine / the processing
time py, is given; then, the completion times of the jobs on the machines can be computed for
any given permutation o=([1],..., [n]) of # jobs as follows

Ciy = Pup @

C,=C +p, Yi=2..n)

C[’;] = C[’I']’l + Py Vh=2,..,m (3)

Cl =max{C ,C' ' +p,, Yh=2,.,m;j=2,.,n)

where C[’;.] represents the completion time of the j-th job in the permutation on machine h.

The scheduling problem is to find the job permutation ¢* that minimizes the makespan Cmax,

corresponding to the completion time of the last job on the m-th machine, i.e, C =C .

The makespan minimization for the PFS problem, denoted as 1n/m/P/Cmax, was originally
proposed in (Johnson, 1954) and afterwards it has been widely investigated in the literature.
This problem is NP-hard in the strong sense (Garey et al., 1976) for m=3 and only instances
of limited size can be solved by exact solution methods in an acceptable computation time.
Therefore numerous heuristics approaches have been proposed in the literature, among
which constructive heuristics (e.g., (Palmer, 1965), (Campbell et al., 1970), (Taillard, 1990))
improvement heuristics (e.g, (Ho & Chang, 1991), (Woo & Yim, 1998), (Suliman, 2000)) and
metaheuristics as SA ((Osman & Potts, 1989), (Ishibuchi et al., 1995)), TS ((Nowicki &
Smutnicki, 1996), (Grabowski and Wodecki, 2004)), GA ((Reeves, 1995), (Ruiz et al., 2006)),
ACO ((Rajendran & Ziegler, 2004)) and PSO algorithms ((Liao et al., 2007), (Lian et al.,
2006a), (Tasgetiren et al., 2007), (Jarboui et al., 2007)), some of which are taken as reference
for the performance evaluation of the PSO-SA proposed in the following.

3. Two hybrid population-based metaheuristics

In this section we introduce the main concepts of ACO and PSO and we show how two
hybrid algorithms, respectively ACO-SA and PSO-SA, can be derived through the

6 Simulated Annealing

interaction with SA. Note that in order to illustrate the specific characteristics of the
algorithms we refer to the STWTSDS problem for ACO-SA and to the PFS one for PSO-SA.

3.1 The hybrid ant colony optimization algorithm

The ACO metaheuristic aims at exploiting the successful behaviour of real ants in

cooperating to find shortest paths to food for solving combinatorial problems (Dorigo &

Stiitzle, 2002), (Dorigo & Blum, 2005). Most of the real ants use stigmergy during food search,

i.e, they have an effective indirect way to communicate each other which is the most

promising trail, and finally the optimal one, towards food. Ants produce a natural essence,

called pheromone, which is left on the followed path to food in order to mark it. The
pheromone trail evaporates over time, finally disappearing on the abandoned paths. On the
other hand, the pheromone trail can be reinforced by the passage of further ants; due to this
fact effective (i.e., shortest) paths leading to food are finally characterized by a strong
pheromone trail, and they are followed by most of ants. The ACO metaheuristic was first
introduced in (Dorigo et al., 1991), (Dorigo et al., 1996) and (Dorigo, 1992), and since then it
has been the subject of both theoretical studies and applications. ACO combines both

Reinforcement Learning (RL) (Sutton & Barto, 1998) and Swarm Intelligence (SI) (Kennedy &

Eberhart, 2001) concepts:

e each single agent (an ant) takes decisions and receives a reward from the environment,
so that the agent’s policy aims at maximizing the cumulative reward received (RL);

o the agents exchange information to share experiences and the performance of the
overall system (the ant colony) emerges from the collection of the simple agents’
interactions and actions (SI).

ACO has been successfully applied to several combinatorial optimization problems, from
the first travelling salesman problem applications (Dorigo et al., 1991), (Dorigo et al., 1996),
to vehicle routing problems (Bullnheimer et al., 1999), (Reinmann et al., 2004), and to single
machine and flow shop scheduling problems (den Besten et al., 2000), (Gagné et al., 2002)
and (Ying & Liao, 2004).
In this section we present a new hybrid ACO-SA approach to face the STWTSDS problem.
In (Anghinolfi & Paolucci, 2008) we recently introduced the main characteristics of the pure
ACO component of ACO-SA, which mainly differ from previous approaches in the
literature for the following aspects: (a) we use a new pheromone trail model whose
pheromone values are independent of the problem cost (or quality) function and they are
bounded within an arbitrarily chosen and fixed interval; (b) we adopt a new global
pheromone update (GPU) rule which makes the pheromone values asymptotically increase
(decrease) towards the upper (lower) bound, without requiring any explicit cut-off as in the
Max-Min Ant System (MMAS) (Stiitzle & Hoos, 2000); (c) we use a diversification strategy
based on a temporary perturbation of the pheromone values performed by a local
pheromone update (LPU) rule within any single iteration. The ACO that we proposed in
(Anghinolfi & Paolucci, 2008) is mainly based on the Ant Colony System (ACS) (Dorigo &
Gambardella, 1997), and it includes concepts inspired to the MMAS (Stiitzle & Hoos, 2000)
and to the approaches in (Merkle & Middendorf, 2000), (Merkle & Middendorf, 2003), even
if such concepts are encapsulated in a new pheromone model and exploited in a real
different manner. We report in Figure 1 the very high level structure of the ACO-SA
algorithm. In the following we will detail all the involved steps apart from SA intensification
that we will describe in a separate subsection as this step is in common with the PSO-SA
algorithm.

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics 7

Initialization;
k=1;
While <termination condition not met>
{
For each ant a€A

{
Construction of solution xak;
Local pheromone update;
}
SA intensification;
Global pheromone update;
k=k+1;
}
Figure 1. The overall ACO-SA algorithm
We consider a set A of na artificial ants. At each iteration k, every ant a identifies a solution
x{; building a sequence o(x') of the n jobs, whose objective value Z(x') is then simply
computed by executing each job at its feasible earliest start time for that sequence. Every ant

a builds the sequence o(x') by iterating n selection stages: first, the set of not sequenced

jobs for ant a, U’, is initialized as U’ = {1,...,n} ; then, at stage h=1,..., n, the ant a selects one

a a

job j from the set U’ to be inserted in the position & of the partial sequence, and updates

U" =U""\{j}; at stage h=n all the jobs are sequenced and U’ = . The job selection at

a a

each stage /1 of the construction procedure at iteration k is based on a rule that is influenced
by the pheromone trail 7, (h, j)associated with the possible solution components, i.e.,

position-job pairs, (1, j), where je U'" . Differently from other approaches in the literature,
the pheromone values assigned to 7,(k,j) are independent of the objective or quality
function values associated with previously explored solutions including the component
(1, j). In particular, we adopt an arbitrary range [7,,,,7,,.] for the pheromone values, which

is independent of the specific problem or instance considered; therefore any pair of values,
such that 7

vin < The » €N be chosen so that 7, and r,, are not included in the set of

parameters that must be specified for the algorithm. In addition, the GPU rule controlling

the ant colony learning mechanism imposes a smooth variation of 7, (4, j) €[z,,,,7,..] such

Min > ¥ Max]

that both the bounds are only asymptotically reached. Note that also in MMAS lower and
upper bounds are imposed forz, (h,j), but they must be appropriately selected,

dynamically updated each time a new best solution is found, taking into account the
objective function values, and they are used as cut-off thresholds. In the following we

consider relative pheromone values ', (4, j) =7, (h, j)—1,,, such that 7' (h,j)e[0,7',, 1,

where 7', =7, —7,,, whenever this makes simpler and more readable the expressions

introduced.
Initialization. For each solution component (#, j), h, j=1,..., n, we assign an initial value of the

pheromone trail by fixing z,(%,j) = (7, +7,,)/2; in addition, we initialize the best

Min

8 Simulated Annealing

current solution x* as an empty solution, fixing the associated objective value Z(x") to
infinity.

Job selection rule. At a selection stage h of iteration k, an ant a determines which job je U :’] is
inserted in the h-th position of the sequence as follows. First, similarly to the ACS, the ant
chooses which job selection rule to use between exploitation and exploration: a random
number g is extracted from the uniform distribution U[0, 1] and if g<go the ant uses the
exploitation rule, otherwise the exploration one. The parameter gy (fixed such that 0<ge<1)
directs the ants” behaviour towards either the exploration of new paths or the exploitation of
the best paths previously emerged. The exploitation rule selects the job j in a deterministic
way as

j=arg max {r', (h,j)-[n(h,j)]ﬂ} ©®)

whereas the exploration rule according to a selection probability p(h, j) computed as

7' (b, j)-[n(h,)]
> 7 () [nth H]

zlel/’[,”I

p(h,j) = ©)
The quantity 77(/, j), associated with the solution component (4, j), is an heuristic value

computed equal to the priority 1, (%, J) of assigning job j in position / at time t according to
the ATCS rule (Lee et al., 1997)

» max(d, — p, —t,0 s
’7<h»f'>=1,<h,j>=ﬁexp{ wr)}exp{‘ W—”j} ?)
J klp sz
where
h-1
1= 20006090 () + Py 9) * Sp 1)) ®)
=

p and s are respectively the average processing time and the average setup time, and k;

and k; are the lookahead parameters fixed as originally suggested in (Lee et al., 1997).
Therefore, in the ACO-SA algorithm the influence of the sequence-dependent setups is
encapsulated in the heuristic values used in the job selection rule. The parameter fin (5) and
(6) is the relative importance of the heuristic value with respect to the pheromone trail one.
Local pheromone update (intra-iteration diversification). As often done in ACO approaches to
avoid premature convergence of the algorithm, a LPU is performed after any single ant a
completed the construction of a solution x, in order to make more unlike the selection of the
same sequence by the following ants. In the ACO-SA we adopt the following the local
pheromone update rule

T'k(haj) = (l—p)"l"k(h,j) Vh= 1,,)’!,] = ¢(y(h) (9)

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics 9

where pis a parameter fixed in [0, 1]. We must remark that such kind of update strictly local,
i.e.,, we use it to favour the diversification of the sequences produced by the ants within the
same iteration and (9) temporarily modifies the pheromone values only in the single
iteration scope, since such changes are deleted before executing the global pheromone update
phase and starting the next iteration. We denoted in (Anghinolfi & Paolucci, 2008) this
feature is as reset of the local pheromone update (RLPU).

Global pheromone update. The (relative) pheromone values 7' (%, j) are varied within the

range [0, 7’ Max] during the GPU phase with a rule, called Unbiased Pheromone Update

(UPU), that we introduced in (Anghinolfi & Paolucci, 2008). The UPU rule does not uses cost
or quality function values, but smoothly updates of pheromone trails associated with a set

*
of quality solution components. We denote with {2, the best component set determined after

the completion of iteration k; then, the UPU rule consists of the three following steps:

*
1. pheromone evaporation for the solution components not included in £,

thl(h,j):(l—a)'T',((h,j) V(h,])EQ; (10)
where 0 < <1 is a parameter establishing the evaporation rate;
2. computation of the maximum pheromone reinforcement Az' (h,j) for the solution

A
components in Q,

At (=1 —7'(hj) V(hj)eQ, (11)

Max

3. update of the pheromone trails to be used in the next iteration for the solution
components in Q,

T)= (h, j)+a-At' (h,j) V(h j)eQ, (12)

The UPU rule guarantees that 7', (4, j) €[0,7'
bounds asymptotically (Az' (h,j) is progressively reduced as much as z' (4,))

] and that 7', (h, j) converges towards the

Max

approaches to 7', , as well as the decrease of 7', (%, j) towards 0 in (10)) with a law similar

Max
to the most frequently used cooling schedule for SA. The set Q, adopted in the ACO-SA is
the one defined in (Anghinolfi & Paolucci, 2008) as the Best-so-far (BS) solution component

set, that is, it includes only the solution components associated with the best sequence ¢ *
find so far

Q, ={(hj):h=1..n;j=¢.(h)} (13)

Termination conditions. The algorithm is stopped when a maximum number of iterations, or a
maximum number of iterations without improvements, is reached.

3.2 The hybrid particle swarm optimization algorithm
PSO is a recent metaheuristic approach motivated by the observation of the social behaviour
of composed organisms, such as bird flocking and fish schooling, and it tries to exploit the

10 Simulated Annealing

concept that the knowledge to drive the search for optimum is amplified by social
interaction. PSO executes a population-based search in which the exploring agents, the
particles, modify their positions during time according not only to their own experience, but
also to the experience of other particles. In particular, a particle p may change its position
with a velocity that in general includes a component moving p towards the best position so
far achieved by p to take into account the particle experience, and a component moving p
towards the best solution so far achieved by any among a set of neighbouring particles (local
neighbourhood) or by any of the exploring particles (global neighbourhood). Note that,
differently from GA, the PSO population is maintained and not filtered. PSO is based on the
Swarm Intelligence (SI) concept (Kennedy & Eberhart, 2001): the agents are able to exchange
information in order to share experiences, and the performance of the overall multi-agent
system (the swarm) emerges from the collection of the simple agents’ interactions and
actions. PSO has been originally developed for continuous nonlinear optimization (Kennedy
& Eberhart, 1995), (Abraham et al., 2006). The basic algorithm for a global optimization
problem, corresponding to the minimization of a real objective function f(x) of a variable
vector x defined on a n-dimensional space, uses a population (swarm) of np particles; each
particle i of the swarm is associated with a position in the continuous n-dimensional search
space, x;=(xi1,..., Xis) and with the correspondent objective value f(x;) (fitness). For each
particle i, the best previous position, i.e. the one where the particle found the lowest
objective value (personal best), and the last particle position change (velocity) are recorded
and represented respectively as pi=(pis,..., pin) and v=(vi1,..., vin). The position associated
with the current smallest function value is denoted as g=(g1,..., gu) (global best). Denoting

with xand v/ respectively the position and velocity of particle i at iteration k of the PSO
algorithm, the following equations are usually used to iteratively modify the particles’
velocities and positions:

k+1

\%

i

=wf +on-(p—x)+en-(g-x) (14)

X=X v (15)
where w is the inertin parameter that weights the previous particle’s velocity; ¢; and ca,
respectively called cognitive and social parameter, multiplied by two random numbers r; and
2 uniformly distributed in [0, 1], weight the velocity towards the particle’s personal best,

(p, —x'), and the velocity towards the global best solution, (g —x!), found so far by the

whole swarm. The new particle position is determined in (15) by adding to the particle’s
current position the new velocity computed in (14). The PSO velocity model given by (14)
and (15) is called gbest, but also a Ibest model is introduced in (Kennedy & Eberhart, 2001): in
this latter model the information about the global best position found so far by the whole
group of particles is replaced by the local best position for each particle i, [i=(lis,... lin), i.e.,
the position of the best particle found so far among a subset of particles nearest to i. The PSO
parameters that we need to fix are the inertia w, the cognitive and social parameters c; and
2, and finally the dimension of the swarm np; taking into account that in the standard PSO
for continuous optimization c;+c;=4.1 (Clerc & Kennedy, 2002), the number of parameters
needed by this metaheuristic is quite reduced.

In recent years many there is an increasing attention in the literature for application of the
PSO approach to discrete combinatorial optimization problems. For example, PSO has been
applied to the traveling salesman problem (TSP) (Pang et al., 2004), the vehicle routing
problem (Chen et al., 2006), and scheduling problems (Tasgetiren et al., 2004), (Liao et al.,

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics 11

2007), (Lian et al., 2006a), (Lian et al., 2006b), (Allahverdi & Al-Anzi, 2006) and (Parsopoulos
& Vrahatis, 2006). Discrete PSO (DPSO) approaches differ both for the way they associate a
particle position with a discrete solution and for the velocity model used; in particular, since
here we consider a combinatorial problem whose solutions are represented by
permutations, we could classify the DPSO approaches in the literature according to three
kinds of solution-particle mapping, i.e., binary, real-valued and permutation-based, and
three kinds of velocity model used, i.e., real-valued, stochastic or based on a list of moves.
The first DPSO algorithm proposed in (Kennedy & Eberhart, 1997) used a binary solution
representation and a stochastic velocity model since it associates the particles with n-
dimensional binary variables and the velocity with the probability for each binary
dimension to take value one. In (Tasgetiren et al., 2007), (Tasgetiren et al., 2004),
(Parsopoulos & Vrahatis, 2006) real values are associated with the particle dimensions to
represent the job place in the scheduling sequence according to a random key representation
(Bean, 1994), and a smallest position value (SPV) rule is exploited to transform the particle
positions into job permutations. Permutation-based solution-particle mappings are used in
(Hu et al., 2003) for the n-queens problem together with a stochastic velocity model,
representing the probability of swapping items between two permutation places, and a
mutation operator, consisting of a random swap executed whenever a particle coincides
with the local (global) best one. In (Lian et al, 2006a) particles are associated with job
sequences and velocities are implemented as crossover and mutation operators borrowed
from the genetic algorithm approach. Generally the velocity models adopted in DPSO
approaches are either stochastic or real-valued. To our best knowledge the unique examples
of velocity models based on a list of moves can be found in the DPSO approach for the TSP
in (Clerc, 2004), together with the new DPSO approach that we very recently presented in
(Anghinolfi & Paolucci, 2007b) to face the STWTSDS problem. This velocity model is quite
difficult to be used as it needs the definition of an appropriate set of operators to extend the
PSO computations in a discrete solution space.

In the following we illustrate the main features of the hybrid PSO-SA which extends the
DPSO approach introduced in (Anghinolfi & Paolucci, 2007b) to face the PFS problem. As
for the algorithm in (Anghinolfi & Paolucci, 2007b), PSO-SA is based on both a permutation
solution-particle representation and on a list-of-moves velocity model, but differently we
here introduce a new restart mechanism to avoid the stagnation of particles. In Figure 2 we
report the overall structure of the PSO-SA algorithm. Then, similarly to what done for ACO-
SA, we will detail the main PSO steps, finally dealing with the SA intensification in the last
subsection.

Initialization;
While <termination condition not met>
{
For each particle
{
Velocity update;
Position update;
Fitness computation;
}
SA intensification;
Group restart;
Best references update;
t
Figure 2. The PSO-SA algorithm.

12 Simulated Annealing

We use a set of np particles, each one associated with a permutation o, that is, with a
schedule x whose fitness is given by the cost value Z(x). To define the particle behaviour
we need to introduce a metric for the permutation space and a set of operators to compute
velocities and to update particles” positions consistently. As illustrated in (Anghinolfi &
Paolucci, 2007b) we define a velocity as a set of moves, called pseudo-insertion (PI) moves,
that, if applied to a given particle or permutation, change the position of the particle,
generating a different permutation. Velocities are produced as difference between particle
positions. For example, given a pair of particles p and g, the velocity v moving particle p
from its current position to the one of particle g is a list of PI moves computed as the
difference v=6,-0,. A PI move is a pair (j, d), where d is an integer displacement that is
applied to job j within the permutation. Assuming for example that j=¢(h), a PI move (j,
d), which delays a job j in the permutation o, extracts j from its current place h in ¢ and
reinserts it generating a new permutation such that j=¢p(min(h+d, n)); analogously, a PI
move (j, -d), which instead anticipates a job j, produces a new sequence such that
j=p(max(h-d, 0)). If for example we consider two particles associated with two
permutations of n=4 jobs, c,=(1,2,3,4) and ¢,=(2,3,1,4), then, we compute the velocity
v=0,-6,={(1,2),(2, 1),(3,-1)}. The list of PI moves representing a velocity can include at most
a single PI move for a given job.

We define a position-velocity sum operator to change the particle positions in the
permutation space, which applies the PI moves included in a velocity list one at a time by
extracting the involved job from the permutation and reinserting it in the new place. We
call these moves as pseudo-insertion since in general they do not produce feasible
permutations but what we called pseudo-permutations. We illustrate this point with an
example: if we apply to the permutation c,=(1,2,3,4) the first move in the velocity
v={(1,2),(2, -1),(3,-1)}, then we extract job 1 from the first place and reinsert it in the third
place obtaining the pseudo-permutation (-,2,[3,1],4), where symbol “-“ denotes that no job
is now assigned to the first place, whereas [3,1] represents the ordered list of the two jobs
3 and 1 both assigned to the third place. Hence, PI moves produce in general not feasible
permutations but pseudo-permutations characterized by one or more empty places and
by others places containing a list of jobs. Then, we introduce the permutation completion
procedure reported in Figure 3 to transform a pseudo-permutation into a feasible
permutation. In Figure 3 n(h) denotes the ordered set of items in the h-th place of the
pseudo-permutation w, pull(s) the function that extracts the first element from an ordered
set s, and push(i, s) the function that inserts the element i at the bottom of the set s. Hence,
the permutation completion procedure manages n(h) as a first-in-first-out (FIFO) list. As
an example, starting from the pseudo-permutation n=([1,3],--,[4,2]) the permutation
completion procedure produces the feasible permutation (3,1,4,2).

We define a velocity sum operator @ which generates the list of PI moves for a velocity
w=v®v’ from the union of the PI moves in v and v’; in addition, since any job can appear
only once in the PI list associated with a velocity, if v and v include respectively the PI
moves (j, d) and (j, d'), then w must include (j, d+d) only if d+d’#0. Finally, we define the
constant-velocity multiplication so that the velocity computed as w=c-v, where c is a real
positive constant, includes the same PI moves of v whose displacement values have been
multiplied by c.

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics 13

Input: ® a pseudo-sequence
Output: ¢ a feasible sequence
for each h=1,...,n
{
if In(h) =1 skip;
else 1f |m(h) |=0
{
repeat
k=h+1;
while k<n and |m(k) [=0
n(h)=pull(m(k));

else if |m(h) |>1

while [n(h) [>1
push (pull (n(h), m(h+1));

}

o=n;
Figure 3. The sequence completion procedure.

We can now consider the main steps of PSO-SA.

Initialization. A set of initial solutions, i=1,..., np, is assigned to the np particles by randomly
generating a set of np permutations. This initialization procedure is similar to the one
adopted for the discrete PSO approach in (Tasgetiren et al., 2007). Analogously, a set of np
initial velocities is randomly produced and associated with the particles. In particular these
velocities are generated first randomly extracting the number of PI moves composing a
velocity from the discrete uniform distribution U[[Ln/4], Ln/2]], then, for each move,
randomly generating the involved job and the integer displacement are respectively from
U1, n] and from U[L-n/3], Ln/3]]. The set of particles is partitioned into n. clusters Gg,
cl=1,..., n., randomly associating each particle to one of them, and the local best position I;

(i-e., the related solution x3;), computed as /, = arg mén 4 (xf) , is associated with each particle
JEGy

ieGg. The quantity n. is an input parameter of the algorithm. Finally, the global best
position, that is the position associated with the best permutation found by any of the
particles, is denoted with g (whose related solution is xg).

Velocity and position update. At iteration k, we define for each particle i three velocity
components, inertial (iv), directed to local best velocity (lv), and directed to global best
velocity (gv), as follows:

v =wy (16)
lvik =c\n (lz - O-ikil (17)
gV =crn-(g-0) (18)

Parameters w, c; and c; respectively represent the inertin parameter that weights the
previous particle’s velocity, and two kinds of social parameters, multiplied by two random

14 Simulated Annealing

numbers r; and 2 extracted from U[0,1], weighting the velocities towards the best position
in the clusters (local best) and the global best position of the whole set of particles. Then, we
update the particles’ velocities by summing the three components (16), (17) and (18). The
velocity model adopted for the PFS problem is the one called glbest in (Anghinolfi &
Paolucci, 2007b) that does not include any velocity component directed towards the
particle’s personal best solution. In addition, differently from the standard PSO procedure,
we compute the new position separately summing to the current particle position the three
velocity components (16), (17) and (18) one at a time, so moving the particle through a set of
intermediate feasible permutations obtained by the permutation completion procedure.

Restart of a group of particles. Differently from the DPSO in (Anghinolfi & Paolucci, 2007b), we
restart all the particles in a group to avoid a premature convergence of the algorithm due to
the stagnation of all the particles in one single position of the permutation space and to
differentiate exploration. In particular, the positions of the particles belonging to the group
whose local best solution is coincident with the global best solution of the swarm are
reinitialized with a random solution and the local best is reset. Moreover, after such a reset,
for the same group of particles we substitute for r iterations the weight of the global best

velocity component ¢, with the value ¢; computed according to the following rule

. k=K

¢, =¢

) k=k\.k'+r (19)

Since k’ is the iteration at which the reset of the positions takes place and r is a parameter to
be fixed, (19) corresponds to set for all the involved particles the value of the weight c> to 0
and then to make it linearly increase to its original value in r iterations. In this way the
diversification effect of this group restart is reinforced since the particles in this group are
not driven to immediately follow the direction towards the global best position but they can
search for other good solutions independently.

3.3 The SA intensification

The SA intensification step included in the overall structures of both the ACO-SA and PSO-
SA algorithms respectively in Figure 1 and 2 is performed using a SA procedure similar to
the one adopted for the H-CPSO algorithm presented in (Jarboui et al., 2007). The SA
algorithm, which originally took its inspiration from the simulation of the physical
annealing of melted metals (Kirkpatric et al., 1983), iterates exploring the neighbourhood
N(x) of the current solution x accepting a stochastically generated candidate x’eN(x) with

the following probabilistic rule: if AZ=Z(x)-Z(x")<0 then x” becomes the new current solution,
-AZ

otherwise x” is randomly accepted according to the probability distribution P(4Z, T)= e’),
where T is a control parameter playing the role of the temperature in the physical annealing
process. This algorithm is usually initialized with a high value Ty of the control parameter
and it iterates progressively decreasing it until a termination condition is met according to a
rule, called cooling schedule, which is critical for the algorithm convergence (Kirkpatric et al.,
1983). In both the proposed hybrid algorithms to update T we adopt the exponential rule
Ti=To-0% where 8is a constant positive parameter. Similarly to (Jarboui et al., 2007) we use a
stochastic definition of the neighbourhood N(x) of the current solution x based on the
random selection of insert and swap moves. In particular, we apply either an insert or a

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics 15

swap move on the permutation associated with x to generate the solution candidates at each
SA iteration: first the algorithm randomly chooses with probability 0.5 between the two
kinds of move, then it randomly selects the job to be moved and its insertion point or the
pair of jobs to be swapped. The SA terminates when it reaches a maximum number of non
improving iterations.

An important aspect to be considered whenever we embed an intensification procedure into
a main metaheuristic is when such procedure is fired and which triggering rule is used.
Designing a (hybrid) metaheuristic we should find an acceptable balance between
exploration thoroughness and computational burden. Apparently, intensification steps
greatly improve the accuracy of the search but also increase the time of computation. A
quite straightforward choice for the two algorithms considered in this chapter is to perform
intensification after all the exploring agents complete an iteration. Then, in ACO-SA the SA
intensification takes place after all the ants generate a solution and in PSO-SA after all the
particles have updated their position. Triggering rules specify which set X, of solutions in

the current population have to be intensified, i.e., which solutions are chosen as starting
point of SA. Even in this case a balance between accuracy and computation workload must
be usually found. We can adopt rules selecting one or more starting points for
intensification as detailed in the following.

a) The best in iteration (BI) rule: the SA is started from the (single) best solution found by

the ants (particles) in the current iteration, i.e., X, = {x. :i" =arg min Z(x)}.

i=l,..,na
b) The random (RND) rule: the SA is started from a single solution that is randomly
extracted from the solutions determined by the ants or particles in the current iteration
k.
c) The improved solution without intensification (ISWI) rule: to implement this rule we need

to define x,, as the best solution found by any ant (particle) in the previous iterations
without using the SA intensification. Then, the set X, may include one or more

solutions found in the current iteration k improving x,,, ie.
X, ={x"Z(x")< Z(x,,,),i =1,...,na} . Apparently, the number of solutions that can be
subject to intensification at the end of an iteration with this rule can vary from zero to
the number of ants na (or to the number of particles, np), even if the upper bound
appear very unlikely.

d) The all (ALL) rule: the intensification is started from all the solutions found by the ants

or particles in the current iteration k.
Independently of the used rule, if the solution produced by SA improves the starting x.,

then in ACO-SA the new solution may become the new current best and their relevant
pheromone trails are updated accordingly, whereas in PSO-SA the new solution is
associated with the particle i¥, so updating its relevant position, and the Ibest solution for the
cluster including particle i*, as well as the gbest solution are possibly updated.

The BI and RND rules clearly outperform the ALL rule, and they are very likely to
outperform also the ISWI one, under the computational time aspect as they both intensify a
single solution. The ALL rule apparently should allow to produce solutions with the same
quality of the other rules (we must keep in mind that intensification is executed with a
stochastic algorithm) if we grant it a sufficiently long computation time, since it is a superset

16 Simulated Annealing

of them; on the other hand the ALL computational requirement is so high to make such rule
hard to be accepted. Our experience also pointed out that the quality of the solutions yielded
using RND are on the average dominated by the ones form the BI one. Therefore, we believe
that in general the BI and ISWI may represent good compromise choices for triggering rules:
the decision between these two rules can finally depend on the different time and quality
requirements of the case under concern.

4. Experimental results

In this section we present some experimental results with the purpose of providing evidence
on the possible benefit of combining SA with the two population-based metaheuristics
considered. To this end we compared the behaviour of ACO-SA and PSO-SA with the one of
the two same algorithms when LS is used instead of SA as intensification component. In
particular, we adopted the deterministic LS procedure, reported in Figure 4, that, similarly
to the SA algorithm described in the previous section, explores a mixed type of solution
neighbourhood obtained by insert and swap moves.

Xp=Xc=Xos
non_ impr=0;
neigh type=1;

repeat

{

X =Xp;
x.=best in neigh (x,,neigh type);

if Z(xc)<Z(xyp)
{
Xp=Xcr
neigh type=1;
}

else
{
non_impr++;
neigh type++;
}
} until (non_impr > max non_impr) and
neigh type<=2;

Figure 4. The LS algorithm

We must observe that the LS in Figure 4 implements a kind of variable neighbourhood
descent procedure (VND) (Hansen & Mladenovic, 1999), which for each current solution
completely explores the neighbourhood generated by insert moves and, if no improvement
is found, the one produced the swap moves. Then, in the following we report first the
experimental tests performed for ACO-SA, giving greater emphasis to the analysis of the
behaviour and relative effectiveness of the alternative triggering rules introduced in Section
3.3, whereas we limit the successive discussion on PSO-SA only on the comparison with the
LS intensified version of algorithm. All the versions of the two algorithms analysed were

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics 17

coded in C++ and the experimental tests were executed on an Intel Core 2 6600, 2.4 GHz, 2
Gb PC (note however that our implementations do not exploit the dual processor
architecture). During all the experimental campaign we adopted as termination criterion the
maximum number of fitness (objective) function evaluations, that we fixed = 20,000,000.
This choice follows the recommendation in (Taillard, 2005) suggesting the use of absolute
computational burden measures (i.e., independent of the kind of computer) in order to
obtain results easier to be compared in the scientific community. As regards the values of
the parameters characterizing the SA procedure included in both the hybrid algorithms here
considered, we fixed 6=0.95, the initial temperature Ty = -(0.2-Zy)/log(0.5) (such value is
chosen to impose that at the initial iteration the probability of accepting a solution with a
20% deviation from objective value of the starting solution is 0.5), and imposing 10-n2 non
improving iterations, where 7 is the number of jobs of the considered scheduling problem,
as SA stopping criterion (note that similar settings are used in (Jarboui et al., 2007)).

4.1 The tests on ACO-SA

The benchmark that we adopted to analyse ACO-SA is the set of 120 problem instances for
the STWTSDS with 60 jobs provided in (Cicirello, 2003) and available online at
http:/ /www.cs.drexel.edu/ ~cicirello/benchmarks.html. Note that this benchmark was
used for testing various metaheuristic approaches recently appeared in the literature as
(Cicirello & Smith, 2005), (Liao & Juan, 2007), (Cicirello, 2006), (Lin & Ying, 2006),
(Anghinolfi & Paolucci, 2008) and (Anghinolfi & Paolucci, 2007b). The benchmark was
produced by generating 10 instances for each combination of three different factors usually
referenced in the literature (for a definition and discussion see, e.g., (Pinedo, 1995)): the due
date tightness o, the due date range R, and the setup time severity &, selected as follows:
06e{0.3, 0.6, 0.9}, R{0.25, 0.75}, £={0.25, 0.75}. For this set of tests we fixed the parameters
characterizing the ACO as follows: na=30, =0.09, =0.5, p=0.05, qo=0.7.

We conducted first a test in order to compare the possible triggering rules, i.e., BI, RND,
ISWTI and ALL, for ACO-SA. For each configuration of the algorithm c and for each instance

i in the benchmark we executed 5 runs then computing the average result Z_; after that, we

obtained the best average result for each instance i as Z = min Z./. , and we computed for

each configuration ¢ and instance i the average percentage deviation A; from the best
average Z, as

A =Za T (20)

A, ==2A, (1)

where [is the total number of instances considered. In Table 1 we summarise the obtained
results. The columns of Table 1 report the overall average percentage deviations (A;) and the

18 Simulated Annealing

relevant standard deviations (Std) for the four tested triggering rules, with and without the
elimination of possible outliers; in fact, since in the objective values in the benchmark we
observed differences of several orders of magnitude, the elimination of the outliers would
reduce the possible influence of very slight absolute differences in the objectives for
instances with small reference values. In particular, excluding the outliers we eliminated
from the computation of the averages the instances with a percentage deviation not in the
interval (-40%, 40%). In the last column of Table 1 we also show the average computational
time (CPU) in seconds needed to terminate the runs.

Without outliers (5 over 120)

Ac Std Ac Std CPU (sec.)
BI [0.14% 0.44% 0.10% 0.20% 23.8
RND (2.18% 6.10% 1.49% 4.89% 22.5
ISWI | 7.51% 20.53% 4.21% 13.22% 20.8
ALL |7.99% 23.89% 4.41% 15.15% 20.6

Table 1. The comparison of intensification triggering rules for ACO-SA.

As we can observe, there are relevant differences both in the average percentage deviations
and in the standard deviations for the tested rules. Then we executed the well-known non-
parametric Friedman’s test with 5% significance level obtaining that the differences between
two groups of rules, one consisting of Bl and RND, and the other ISWI and ALL, are
significant from a statistical standpoint, both including and excluding the outliers.
Therefore, at least for the kind of termination condition here considered, the two rules that
execute a single SA intensification for iteration of the algorithm dominates the others. This
may be due to the fact that the fixed maximum number of fitness function evaluations is
better exploited by allowing fewer, here specifically one, SA search for iteration, so letting
the whole algorithm execute a greater number of iterations. This behaviour is also suggested
by the slightly larger computation time spent using the BI and RND configurations. Since
we noted that the overall results for BI and RND in the first two rows of Table 1 were rather
distant, we repeated the statistical test for a lower significance level, finding that the
hypothesis that samples are not significantly different can be rejected when fixing a 4%
level. In the second test performed we compared the ACO-SA results produced with the BI
rule, with the one generated substituting SA with the LS described in Figure 4. In particular,
we compared this latter configuration, denoted as ACO-LS, with ACO-SA in Table 2 (whose
structure is analogous to Table 1).

Without outliers (5 over 120)

Ac Std A Std CPU (sec.)
ACO-SA [0.15% 0.45% 0.11% 0.22% 23.8
ACO-LS [8.25% 22.33% 4.23% 10.05% 16.6

Table 2. The comparison of ACO-SA and ACO-LS.

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics 19

The differences between the performance (both with and without outliers) of the two
algorithms are apparent and also in this case their significance was confirmed by the
statistical test with 5% significance level. Observing the computational times in the CPU
column, we again could explain the worst behaviour of ACO-LS with the attitude of LS of
being trapped in local optima: LS spent more fitness function evaluations than SA at each
iteration as it deeply explores the basin of attraction of the intensified solution; then, the
whole algorithm performed a smaller number of iterations. On the other hand, the ability of
SA of escaping from local optima, i.e., its ability of diversifying the search, clearly turns out
to be more effective.

Even if the evaluation of the performance of stochastic algorithms should always be based
on average results, to complete the tests with the Cicirello’s benchmark for the STWTSDS
we report also the comparison of the best results over 5 runs obtained with ACO-SA and
ACO-LS with a set of best known results. In particular, we consider an aggregate set of best
known solutions combining the best solutions yielded by the following approaches: the
ACO algorithm in (Liao & Juan, 2007), the GA in (Cicirello, 2006) and the SA, GA and TS
algorithms in (Lin & Ying, 2006). Table 3 basically reproduces the same picture of Table 2,
but here the possible presence of good solutions produced by chance for some instances
should appear from the higher standard deviation values.

Without outliers (8 over 120)

Ac Std Ac Std
ACO-SA 1.18% 11.50% 0.99% 3.43%
ACO-LS 8.20% 21.74% 3.41% 6.04%

Table 3. The comparison of ACO-SA and ACO-LS with the best known solution.

4.2 The tests on PSO-SA

In order to evaluate the performance of PSO-SA compared to the one of the PSO algorithm
with the LS presented in Figure 4 (denoted in the following as PSO-LS), we considered the
well-known set of benchmark instances for the PFS problem with makespan criterion
provided by Taillard (Taillard, 1993). In particular, we considered the benchmark set that
includes 10 instances for n=20, 50, 100, 200, 500 jobs and m=5, 10, 20 machines (such classes
of instances are denoted in the following with the n x m notation). For this test we used a set
of np=2-n particles and a number of particle clusters n.=np/10, fixing the values of the
parameters needed by PSO as w=0.5, c1=1 and c;=2, setting r=40 for the instances with 20
and 50 jobs and =20 for the ones with 100, 200 and 500 jobs. Similarly to the campaign for
ACO-SA, we executed 5 runs for each benchmark instance, computing the average results,
the best average results as previously described, finally the overall average percentage
deviations as (21). In this case we directly compared PSO-SA and PSO-LS adopting BI as
intensification firing rule. Table 4 summarizes the results produced by the two algorithms
highlighting the outcomes for the different classes of instances as specified in the first
column (Problem).

20 Simulated Annealing

Avgvs Avg (A) Avgvs BK (ABK) Total CPU CPU for finding best

Problem | PSO-SA PSO-LS | PSO-SA PSO-LS |PSO-SA PSO-LS| PSO-SA PSO-LS
20x5 0.00% 0.00% | 0.04% 0.04% 23.5 26.5 0.1 0.2
20x10 0.00% 0.03% | 0.00% 0.03% 412 42.0 3.7 44
20x20 0.01% 0.01% | 0.02% 0.02% 76.5 79.0 16.7 18.3
50x5 0.00% 0.02% | 0.00% 0.02% 39.8 39.5 3.2 4.0
50x10 0.00% 037% | 054% 0.91% 79.3 71.7 29.7 29.8
50x20 0.00% 0.36% | 1.04% 1.41% 149.3 154.9 78.4 77.9
100x5 0.02% 0.02% | 0.11% 0.11% 76.9 65.8 17.2 17.7
100x10 | 0.03% 0.11% | 0.70% 0.78% 146.7 126.3 55.9 429
100x20 | 0.03% 0.16% | 2.41% 2.54% 2423 275.0 138.7 185.1
200x10 | 0.00% 0.49% | 0.16% 0.65% 253.6 212.7 105.8 106.2
200x20 | 0.00% 1.42% | 1.34% 2.78% 377.2 462.8 270.3 416.8
500x20 | 0.00% 4.06% | 0.75% 4.85% 900.0 1112.2 7374 1104.2

Table 4. The comparison of PSO-SA with PSO-L1 for benchmark instance classes.

The first pair of columns in Table 4 reports the comparison between the overall average
percentage deviations (A.) from the best average; as it appears, PSO-SA outcomes are on the
average never worse than the PSO-LS ones for each class of instances and also the
Friedman's test with 5% significance level confirmed the statistical significance of this result.
We must remark that we report here also the runs for the greatest instances with 500 jobs
even if for such cases the value of maximum fitness function evaluations adopted as
termination criterion turned out to be too restrictive: such value in fact allowed a too small
number of iterations to really appreciate the behaviour of the whole hybrid approach
(actually, we could consider the test for the 500x20 only a comparison between SA and LS).
Nevertheless, we verified the statistical significance of the results even excluding the 500x20
instances. The second pair of columns in Table 4 shows the overall average percentage
deviations (ABK.) of the average PSO-SA and PSO-LS results from the best know solutions
(BK) for the Taillard’s PSP benchmark (we suggest the readers interested to BK to refer to
Taillard’s web site where this set is maintained and updated). The third pair of columns
reports the total average CPU time needed by the compared algorithms to terminate,
whereas the last pair of columns the average CPU needed to find the best solution produced
in the runs (both values are in seconds). As we can observe, the differences among
computational times are not really significant for this benchmark.

We show in Table 5 the overall comparison between PSO-SA and PSO-LS for the
benchmark, including also the standard deviations.

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics 21

Avgvs Avg Avgvs BK CPU

Ac Std | ABK, Std | Total For best

PSO-SA | 0.01% 0.03% | 0.59% 0.73% | 200.5 121.4
PSO-LS | 0.59% 1.14% |1.18% 1.47% |222.4 167.3

Table 5. The overall comparison of PSO-SA and PSO-LS algorithms.

Finally, we can comment that also in the case of a hybrid PSO based algorithm, the presence
of the SA search resulted apparently more effective than a LS one (we must recall that the LS
used here has also a VND flavour), due to its powerful intensification ability but specifically
to its attitude to smoothly diversify the exploration according to the reduction of the value
of the parameter T ruled by the cooling schedule.

5. Conclusions

In this chapter we illustrated how SA can be exploited to embed in two alternative
population-based metaheuristics a trajectory search component. Population-based
metaheuristics need intensification procedures as LS to reach peak performances for discrete
combinatorial problems. The effectiveness of using SA instead of LS to this end emerged
from the experimental tests reported in this chapter. We considered ACO and PSO and we
analysed the performance of the resulting hybrid algorithms on two scheduling problems
quite extensively faced in the literature, the STWTSDS and the PSP problems. However,
even different, the combinatorial structure of such problems is the same, as their relevant
solutions can be represented by permutations. Actually, we compared two “structurally”
similar trajectory methods, LS and SA: in particular we adopted a deterministic LS which
explores a combination of two neighbourhoods generated respectively by insert and swap
moves, with a VND fashion; similarly, the stochastic SA procedure at each iteration derives
the next candidate solution first randomly selecting between an insert and a swap move. In
other words we tried to use the same kind of ingredients in the two trajectory methods in
order to measure their relative strength. Hence the results that we showed allow to conclude
that the principles in SA can lead to superior solution improvement procedures than LS
when the same level of sophistication is used in both of them, without implying the
obviously wrong claim that “any” SA procedure is better than “any” LS.

Hybridization by combining a population-based algorithm, provided with memory,
learning and/or swarm intelligence mechanisms, with SA is a viable strategy to produce in
a simple way high quality metaheuristics. Therefore, we would recommend to consider also
this possibility when tackling complex combinatorial problems: the intensification (the
attitude of operating as a LS) and diversification (the attitude of not limit the search to a
confined region) features that are blended in SA in a dynamic fashion (ruled by the cooling
schedule) are certainly good ingredients for powerful hybrid methods.

6. References

Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys 35(3) (2003) 268-308

22 Simulated Annealing

Doerner, K.F,; Gendreau, M.; Greistorfer, P.; Gutjahr, W.; Hartl, R.F.; Reimann, M. (Eds.).
Metaheuristics - Progress in Complex Systems Optimization. Springer. Series:
Operations Research/Computer Science Interfaces Series , Vol. 39. 2007.

Raidl G.R. A unified view on hybrid metaheuristics. In Francisco Almeida et al., editors,
Proceedings of the Hybrid Metaheuristics Workshop, volume 4030 of LNCS, pages
1-12. Springer, 2006.

Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5) (2002) 541-565.

Dorigo M., Stutzle T. Ant Colony Optimization. MIT Press. 2004.

Anghinolfi D., Paolucci M. Parallel machine total tardiness scheduling with a new hybrid
metaheuristic approach. Computers & Operations Research, Volume 34, Issue 11,
November 2007, Pages 3471-3490

Liu B, Wang L, Jin Y-H. An effective hybrid PSO-based algorithm for flow shop scheduling
with limited buffers. Computers & Operations Research. 2008; 35: 2791-2806.

Qie He and Ling Wang. A hybrid particle swarm optimization with a feasibility-based rule
for constrained optimization. Applied Mathematics and Computation, Volume 186,
Issue 2, 15 March 2007, Pages 1407-1422.

Ling-lai Li, Ling Wang and Li-heng Liu. An effective hybrid PSOSA strategy for
optimization and its application to parameter estimation. Applied Mathematics and
Computation, Volume 179, Issue 1, 1 August 2006, Pages 135-146.

Ge, Hongwei Du, Wenli Qian, Feng A Hybrid Algorithm Based on Particle Swarm
Optimization and Simulated Annealing for Job Shop Scheduling. Proceedings of
ICNC 2007. Third International Conference on Natural Computation 2007. Volume:
3

Weijun Xia and Zhiming Wu. An effective hybrid optimization approach for multi-objective
flexible job-shop scheduling problems. Computers & Industrial Engineering,
Volume 48, Issue 2, March 2005, Pages 409-425

Nihan Cetin Demirel and M. Duran Toksari. Optimization of the quadratic assignment
problem using an ant colony algorithm. Applied Mathematics and Computation,
Volume 183, Issue 1, 1 December 2006, Pages 427-435

Feng, Yuanjing; Feng, Zuren. Ant colony system hybridized with simulated annealing for
flow-shop scheduling problems. WSEAS Transactions on Business and
Econonomics. Vol. 1, no. 1, pp. 133-138. Jan. 2004.

Yogeswaran, M. Ponnambalam, S. G. Tiwari, M. K. An hybrid heuristic using genetic
algorithm and simulated annealing algorithm to solve machine loading problem in
FMS. Proc. of International Conference on Automation Science and Engineering,
2007. CASE 2007. IEEE On page(s): 182-187.

Lawler, E.L. (1997). A ‘pseudopolynomial” algorithm for sequencing jobs to minimize total
tardiness. Annals of Discrete Mathematics, 1: 331-342.

Du, J. and Leung, J.Y-T. (1990). Minimizing total tardiness on one machine is NP-hard.
Mathematics of Operations Research, 15: 483-495.

Lee, Y.H., Bhaskaran, K. and Pinedo, M. (1997). A heuristic to minimize the total weighted
tardiness with sequence-dependent setups. IIE Transaction, 29: 45-52.

Cicirello, V.A. and Smith S.F. (2005). Enhancing stochastic search performance by value-
based randomization of heuristics. Journal of Heuristics, 11: 5-34.

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics 23

Cicirello, V.A. (2003). Weighted tardiness scheduling with sequence-dependent setups: a
benchmark library. Technical Report, Intelligent Coordination and Logistics
Laboratory, Robotics Institute, Carnegie Mellon University, USA.

Liao C-J, Juan HC. An ant colony optimization for single-machine tardiness scheduling with
sequence-dependent setups. Computers & Operations Research 2007; 34; 1899-1909.

Cicirello VA. Non-Wrapping Order Crossover: An Order Preserving Crossover Operator
that Respects Absolute Position. In: Proceeding of GECCO’06 Conference, Seattle,
Washington, USA; 2006. p. 1125-1131.

Lin S-W, Ying K-C. Solving single-machine total weighted tardiness problems with
sequence-dependent setup times by meta-heuristics. The International Journal of
Advanced Manufacturing Technology 2006; Available online
(www .springerlink.com).

Anghinolfi D., Paolucci M., A new ant colony optimization approach for the single machine
total weighted tardiness scheduling problem, International Journal of Operations
Research, Vol. 5, No. 1, 44-60. 2008.

Anghinolfi D., Paolucci M., A new discrete particle swarm optimization approach for the
single-machine total weighted tardiness scheduling problem with sequence-
dependent setup times. European Journal of Operational Research (avaliable
online) 2007.

Johnson SM. Optimal two-and three-stage production schedules. Naval Research Logistics
Quarterly. 1954; 1: 61-68.

Garey MR, Johnson DS, Sethi R. The complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research. 1976; 1: 117-129.

Palmer DS. Sequencing jobs through a multistage process in the minimum total time: A
quick method of obtaining a near-optimum. Operational Research Quarterly. 1965;
16: 101-107.

Campbell HG, Dudek RA, Smith ML. A heuristic algorithm for the n job, m machine
sequencing problem. Management Science. 1970; 16(10): B630-B637.

Taillard E. Some efficient heuristic methods for the flowshop sequencing problems.
European Journal of Operational Research. 1990; 47: 65-74.

Ho JC, Chang Y-L. A new heuristic for the n-job, m-machine flow-shop problem. European
Journal of Operational Research. 1991; 52: 194-202.

Woo HS, Yim DS. A heuristic algorithm for mean flowtime objective in flowshop
scheduling. Computers and Operations Research. 1998; 25: 175-182.

Suliman SMA. A two-phase heuristic approach to the permutation flow-shop scheduling
problem. International Journal of Production Economics. 2000; 64: 143-152.

Osman I, Potts C. Simulated annealing for permutation flow shop scheduling. OMEGA.
1989; 17(6): 551-557.

Ishibuchi H, Misaki S, Tanaka H. Modified simulated annealing algorithms for the flow
shop sequencing problem. European Journal of Operational Research. 1995; 81: 388-
398.

Nowicki E, Smutnicki C. A fast tabu search algorithm for the permutation flowshop
problem. European Journal of Operational Research. 1996; 91: 160-175.

Grabowski], Wodecki M. A very fast tabu search algorithm for the permutation flowshop
problem with makespan criterion. Computers and Operations Research. 2004;
31(11): 1891-1909.

24 Simulated Annealing

Reeves C. A genetic algorithm for flowshop sequencing. Computers and Operations
Research. 1995; 22(1): 5-13.

Ruiz R, Maroto C, Alcaraz J. Two new robust genetic algorithms for the flowshop
scheduling problem. OMEGA. 2006; 34: 461-476.

Rajendran C, Ziegler H. Ant-colony algorithms for permutation flowshop scheduling to
minimize makespan/total flowtime of jobs. European Journal of Operational
Research. 2004; 155(2): 426-438.

Liao C-J, Tseng C-T, Luarn P. A discrete version of particle swarm optimization for
flowshop scheduling problems. Computers & Operations Research. 2007; 34: 3099-
3111.

Lian Z, Gu X, Jiao B: A similar particle swarm optimization algorithm for job-shop
scheduling to minimize makespan. Applied Mathematics and Computation. 2006;
183: 1008-1017.

Tasgetiren MF, Liang Y-C, Sevkli M, Gencyilmaz G. A particle swarm optimization
algorithm for makespan and total flowtime minimization in the permutation
flowshop sequencing problem. European Journal of Operational Research. 2007;
177:1930-1947.

Jarboui B, Ibrahim S, Siarry P, Rebai A. A combinatorial Particle Swarm Optimisation for
solving permutation flowshop problems. Computers & Industrial Engineering.
2007; doi: 10.1016/j.cie. 2007.09.006.

Dorigo, M. and Stiitzle, T. (2002). The ant colony optimization metaheuristics: algorithms,
applications and advances. In Handbooks of metaheuristics (Ed.: Glover, F. and
Kochenberger, G). Int. Series in Operations Research & Management Science,
Kluver, Dordrech, 57: 252-285.

Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical
Computer Science, 344: 243-278.

Dorigo, M., Maniezzo, V. and Colorni, A. (1991). Positive feedback as a search strategy. Tech
Report 91-016. Dipartimento di Elettronica, Politecnico di Milano, Italy.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996). Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Systems, Man, Cybernet.-Part B, 26: 29-41.

Dorigo, M. (1992). Optimization, learning and natural algorithms (in Italian). PhD
Thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy.

Sutton, R.S. and Barto, A.G. (1998). Reinforcement Learning: An Introduction. MIT Press,
Cambridge.

Kennedy, J. and Eberhart, R.C. (2001). Swarm Intelligence. Morgan Kaufmann Publishers.

Bullnheimer, B., Hartl, R.F. and Strauss, C. (1999). An improved ant system algorithm for the
vehicle routing problem. Annals of Operations Research, 89: 319-328.

Reinmann, M., Doerner, K. and Hartl, R.F. (2004). D-ants: savings based ants divide and
conquer the vehicle routing problems. Computers & Operations Research, 31(4):
563-591.

den Besten, M., Stiitzle, T. and Dorigo, M. (2000). Ant colony optimization for the total
weighted tardiness problem. Proceeding PPSN VI, Sixth International Conference
Parallel Problem Solving from Nature, Lecture Notes in Computer Science, Berlin,
Springer, 1917: 611-20.

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics 25

Gagné, C., Price, W.L. and Gravel, M. (2002). Comparing an ACO algorithm with other
heuristics for the single machine scheduling problem with sequence-dependent
setup times. Journal of the Operational Research Society, 53: 895-906.

Ying, G.C. and Liao, C.J. (2004). Ant colony system for permutation flow-shop sequencing.
Computers & Operations Research, 31: 791-801.

Stiitzle, T. and Hoos, H.H. (2000). Max-min ant system. Future Generation Computer
System, 16: 889-914.

Dorigo, M. and Gambardella, L.M. (1997). Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1: 53-66.

Merkle, D. and Middendorf, M. (2000). An ant algorithm with a new pheromone evaluation
rule for total tardiness problems. Proceedings of the EvoWorkshops 2000, Springer
Verlag LNCS 1803: 287-296.

Merkle, D. and Middendorf, M. (2003). Ant Colony Optimization with Global Pheromone
Evaluation for Scheduling a Single Machine. Applied Intelligence, 18: 105-111.

Kennedy], Eberhart R. Particle Swarm Optimization. Proceeding of the 1995 IEEE
International Conference on Neural Network 1995; 1942-1948.

Abraham A, Guo H, Liu H. Swarm Intelligence: Foundations, Perspectives and
Applications. In: Abraham A, Grosan C, Ramos V (Eds), Swarm Intelligence in Data
Mining, Studies in Computational Intelligence (series). Springer-Verlag: Berlin;
2006.

Clerc M, Kennedy]. The particle swarm: Explosion, stability, and convergence in a multi-
dimensional complex space. IEEE Transactions on Evolutionary Computation 2002;
6; 58-73.

Pang W, Wang KP, Zhou CG, Dong L-J. Fuzzy discrete particle swarm optimization for
solving traveling salesman problem. In: Proceedings of the 4th International
Conference on Computer and Information Technology. IEEE CS Press; 2004. p. 796
- 800.

Chen A, Yang G, Wu Z. Hybrid discrete particle swarm optimization algorithm for
capacitated vehicle routing problem. Journal of Zhejiang Univ. SCIENCE A 2006; 7:
607-614.

Tasgetiren MF, Sevkli M, Liang YC, Gencyilmaz G. Particle swarm optimization algorithm
for single machine total weighted tardiness problem. In: Proceedings of the IEEE
congress on evolutionary computation, vol.2. Portland; 2004. p. 1412-1419.

Liao C-J, Tseng C-T, Luarn P. A discrete version of particle swarm optimization for
flowshop scheduling problems. Computers & Operations Research 2007; 34; 3099-
3111.

Lian Z, Gu X, Jiao B. A similar particle swarm optimization algorithm for permutation
flowshop scheduling to minimize makespan. Applied Mathematics and
Computation 2006a; 175; 773-785.

Lian Z, Gu X, Jiao B. A similar particle swarm optimization algorithm for job-shop
scheduling to minimize makespan. Applied Mathematics and Computation 2006b;
183; 1008-1017.

Allahverdi A, Al-Anzi FS. A PSO and a Tabu search heuristics for the assembly scheduling
problem of the two-stage distributed database application. Computers &
Operations Research 2006; 33; 1056-1080.

26 Simulated Annealing

Parsopoulos KE, Vrahatis MN. Studying the Performance of Unified Particle Swarm
Optimization on the Single Machine Total Weighted Tardiness Problem, Lecture
Notes in Artificial Intelligence (LNAI) 2006; 4304; 760-769.

Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm. In:
Proceedings of the International Conference on Systems, Man, and Cybernetics,
vol.5. IEEE Press; 1997. p. 4104-4108.

Bean JC. Genetic algorithm and random keys for sequencing and optimization. ORSA
Journal on Computing 1994; 6; 154-160.

Hu X, Eberhart R, Shi Y. Swarm intelligence for permutation optimization: a case study of n-
queens problem. In: Proceedings of the 2003 IEEE Conference on Swarm
Intelligence Symposium (SIS '03). IEEE Press; 2003. p. 243-246.

Clerc M. Discrete Particle Swarm Optimization. In: Onwubolu GC, Babu BV (Eds), New
Optimization Techniques in Engineering. Springer-Verlag: Berlin; 2004; 219-240.

Kirkpatric S, Gelatt Jr. CD, Vecci MP. Optimization by simulated annealing. Science 1983;
220: 671-80.

Hansen P., Mladenovic N. Variable neighborhood search: Methods and recent applications.
In Proceedings of MIC'99, pages 275-280, 1999.

Taillard E., Few guidelines for analyzing methods. in Tutorial, 6t» Metaheuristics Int. Conf.,
2005.

Pinedo M. Scheduling: Theory, Algorithms, and Systems. Prentice Hall: Englewood
Cliffs, NJ; 1995.

Taillard E. Benchmarks for basic scheduling problems. European Journal of Operational

Research. 1993; 64: 278-285.

2

Multi-objective Simulated Annealing for a
Maintenance Workforce Scheduling Problem:
A case Study

Nima Safaei, Dragan Banjevic and Andrew K.S. Jardine
C-MORE Lab, Department of Mechanical and Industrial Engineering, University of
Toronto Canada

1. Introduction

A multi-objective simulated annealing (MOSA) algorithm is described in this chapter to
solve a real maintenance workforce scheduling problem (MWSP) aimed at simultaneously
minimizing the workforce cost and maximizing the equipment availability. Heavy industry
maintenance facilities at aircraft service centres, railroad yards and steel companies must
contend with scheduling Preventive Maintenance (PM) tasks to ensure critical equipment
remains available (Quan et al., 2007). PM tasks are labour intensive and the workforce that
performs those tasks are often highly-paid and highly skilled with different proficiencies,
which means the PM tasks scheduling should minimize the workforce costs. Therein lies a
dilemma: a small labour force would help control costs, but a small labour force cannot
perform many PM tasks per hour—and equipment that is not available does not generate
revenue. A long completion time is not cost effective but neither is having too many
workforce costs. A proper balance would minimize labour costs while simultaneously
finishing all PM tasks in a timely manner. In other words, a trade-off must be made between
the workforce costs and a timely completion of all PM tasks. Hence, in most real PM tasks
scheduling problems, we encounter the multi-objective optimization.

There are very few previous papers focusing on the maintenance workforce scheduling
problem. Higgins (1998) formulated the railway track maintenance crew problem as a
mathematical program, and then used tabu search algorithms to solve the problem. Ahire et
al.,, (2000) examined the utility of the evolution strategies to solve a MWSP with the aim of
minimizing Makespan considering multiple-skills labour and workforce availability
constraints. Yanga et al.,, (2003) formulated an airline maintenance manpower planning
problem under a one week planning cycle considering various flexible strategies such as
short-term or temporary contracts, trainee, part-time and subcontracted workers. They
considered workforces with different types of skills that are grouped into a number of so-
called “squads” with different numbers of members (or size). The objective was to minimize
the total required manpower while satisfying the demand for every time slot. Quan et al.,
(2007) used the evolutionary algorithms to solve a multi-objective PM task scheduling
problem with the aim of simultaneously minimizing workforce costs and Makespan.
Workforce costs consist of the hiring cost of workers required to complete all PM tasks on
time as well as the idle time cost. Makespan refers to the total amount of time it takes to

28 Simulated Annealing

complete all PM tasks. Notice that these two objectives are conflicting because minimizing
the workforce increases the Makespan. They assumed that workers have two different skills,
i.e.,, mechanic and electric and each worker can perform only one skill.

The rest of the chapter is organized as follows. Section 2 presents the problem description.
In Section 3, the preliminary definition and concepts of the multi-objective optimization as
well as MOSA’s literature are presented. The MOSA to solve the considered problem is
developed in Section 4. Experimental results are presented and discussed in Section 5.
Finally, Section 6 mentions the conclusion and some future work.

2. Problem description

The considered problem is related to a steel company which has recently moved to a plant
wide scheduling approach, through a central department, called Central Services (CS), to
respond to the maintenance requirements of manufacturing areas or Business Units (BUs).
The aim of this department is to minimize the workforce costs as well as avoid long-term
disruptions and shutdowns of the critical equipments within BUs. Each BU schedules their
work requests and then submits them to CS which attempts to schedule the workforce on
those work requests to meet the needs across the plant. Work requests represent PM tasks to
return the associated equipment to the as-good-as-new condition (throughout this paper, we
use the phrase ‘work request’ or briefly ‘work’” and PM task interchangeably). Given the
number and variety of the work requests, and the number of workers and the variety of
their skills, the CS department has found it very difficult to optimally schedule works in a
reasonable time.

The CS department satisfies labour requirements through internal and external resources, as
regular time, overtime, and contract. The internal resource consists of a number of
specialized groups with certain proficiency/skill for PM tasks, called field groups (FGs)
such as mechanical, electrical, pipefitting and lubrication proficiencies. FGs are mobile
groups, variable in size (number of members), which are responsible for PM/repair tasks at
BUs. The external workforce is provided by contractors. Obviously, CS prefers to use the
internal workforce in regular time and overtime (including weekends) and to use the
contractors when they encounter the workforce shortage. CS manages the FGs to meet the
demand of BUs, and supplements them with external forces. The PM schedule for each BU
may be different for different periods depending upon the variety and failure nature of the
existing assets and equipments. Thus, CS always encounters a new set of work requests in
each period that must be scheduled, however, the required information of the work requests
is known for CS in advance. In Figure 1, the relationship between CS, BUs and labour
resources are shown schematically.

2.1 Mapping the MWSP as a generalized job shop scheduling problem

The MWSP can be considered as an extended job shop scheduling problem in which each
FG represents a machine type and each work request represents a job with a number of
operations that must be processed on the predetermined machines according to certain
precedence relations. The capacity of machines is limited in the given planning horizon.
Each job has a known ready/submission time and must be completed before its due date.
The conflicting objectives are the workforce cost minimization versus the BU/equipment
availability maximization. The workforce cost can be interpreted as machine operating/idle

Multi-objective Simulated Annealing for a Maintenance Workforce Scheduling Problem:
A case Study 29

costs and the BU/equipment availability can be interpreted as the flow time of the
associated job (see Section 2.2 for more details). A schematic mapping of MWSP into a job
shop scheduling problem with 4 FGs and 5 work requests is shown in Figure 2. Symbol
“Wi” represents work i. Each work may be done by different FGs according to certain
precedence relations.

[BUl][BUZ][BUB]

External
resources

Internal source
(FGs)

[Regular time] [Overtime] [Contractors]

Fig. 1. Maintenance workforce management by Central Service

«Planning horizon—
.

Submission time! ' |

FG1

e 2 G
- w2] | w4
U | T I IR

{ Overtime \JCoRAGHREN

Fig. 2. Typical mapping of MWSP into job shop scheduling problem

Availability Regular time

A typical example of precedence relations associated with work 2 is shown in Figure 3. As
shown in this figure, FGs 1 and 3 can operate simultaneously; however, both FGs are
preceding operations for FG 2, and also FG 2 is a preceding operation for FG 4. From
mathematical point of view, the precedence relations shown in Figure 3 can be presented as
a 0-1 matrix as shown in Figure 4. As Figure 4 indicates, we need overtime for FGs 1, 3 and 4
to complete works 2, 3, and 5. Also, we need the external workforce as subcontracted
workers for FG 4 to complete work 5. Moreover, the interference constraint between FGs
causes some idle times during the operation time of FGs 1, 3 and 4.

30 Simulated Annealing
FG

O :
2
O 3

4

S O O O
S = O RN
S OO OoOWw
S O R Ol

Fig. 4. Matrix form presentation
for the precedence relations of
Work 2

Fig. 3. Precedence relations between FGs for doing
work 2

2.2 Scheduled and unscheduled shutdowns

As pointed out earlier, each work i is submitted to CS at time r; and must be finished before
due date d.. r; is typically called submission time or earliest start (ES) time, and d; is typically
called the latest request (LR) or latest finish (LF) date. After submission, the process of the
work will start in s; where ES < s; and completed in ¢;, where ¢; < LF. s; is called the starting
time, or “Time in”, and ¢; is called the completion time, or “Time out” of work i. Thus, the
duration or processing time of work i is determined as s; - ¢; (see Figure 5). This duration is
also known as scheduled shutdown in which the asset or equipment will not be available in
interval [s; ci]. However, sometimes an unscheduled shutdown is also considered for the
work request which depends on the starting time of the work. Unscheduled shutdown is an
approximated time interval that is estimated in terms of the magnitude of s;. That is, by
increasing s;, the processing time of the work request (or equivalently the unavailability of
the asset) will increase progressively because of the nature/mode of the failure. The
unscheduled shutdown can be used to determine the importance degree (or weight) of the
work request. The local objective of each BU is to minimize the flow time of corresponding
work requests, i.e., to minimize f; = ¢; - LE. However, solely meeting this objective increases
the workforce costs.

A
Duration
—~
»Time
ES Si Ci

Fig. 5. Scheduled and Unscheduled Shutdowns

According to the above explanation, the MWSP considered in this study deals with two

conflicting objectives:

1. Minimization of the total weighted flow time (TWFT) of works (BUs ultimate objective).

2. Minimization of the workforce costs (WfCs) consisting of fixed, overtime and
contracting costs (one of the CS objectives)

Multi-objective Simulated Annealing for a Maintenance Workforce Scheduling Problem:
A case Study 31

2.3 Man-hour unit to measure the labour requirements

The processing time of a work request is often a function of the number of assigned workers.
That is, by increasing the number of assigned workers, the processing time of the work
decreases with a decreasing slope. In such cases, we need a proper unit to measure work
done. Man-hour is a common time unit used in industry for measuring work. For example,
if the size of a FG is 5 and the number of working hours per day is 8, then 5x8=40 man-
hours are available per day for that FG. Thus, if a work request needs 10 man-hours, it can
be done by one worker in 10 hours, or 2 workers in 5 hours, etc. Man-hour integrates the
time and size of the labour requirements together. A number of studies can be found in
which the labour requirements are estimated in terms of man-hour unit. For instance, in
(Yanga et al., 2003), the maintenance department estimates that the short-term layover
maintenance manpower demand in terms of man-hours, based on the available ground
holding time slots, the different aircraft types, and the tasks required.

2.4 Assumptions

The assumptions of the problem can be summarized as follows:

1. The length of the planning horizon is fixed and the work requests submitted in the
current planning horizon will be scheduled for succeeding planning horizon.

2. All work requests are submitted to CS during the current planning horizon with a
known submission time.

3. The labour requirement and the processing time (duration) of each work request by
each FG are known in advance.

4. Each work request has a known due date.

5. Each FG has a certain proficiency which is provided by the internal resources as regular
and overtime, or the external resources as contract.

6. The number of members (size) of each FG in regular time, overtime and contacting is
known in advance.

7. The labour requirement for work requests is measured in terms of the “man-hour” unit.

8. Workforce availability: The available man-hours for each FG as regular time, overtime
and contract are known in advance.

9. Workforce costs consist of fixed cost, overtime cost and contracting cost per man-hour.
Obviously, the unit cost of contracting is greater than one of overtime.

10. A fixed cost per man-hour is considered irrespective of the type of the workforce (i.e.,
internal or external). This cost can be interpreted as to include the transportation, tools,
lunch and idle costs.

11. Each FG can operate only one work request at a time.

12. The scheduled shutdown of each work request is represented by its flow time. Flow
time is defined as the difference between the completion time (time out) and
submission time of the work request.

13. A weight is also associated with each work request which measures the importance
degree of the work request. This weight is determined in terms of the unscheduled
shutdowns of the work request.

After detailed explanation of the problem, it is worthwhile to briefly highlight how this

study differs from previous works:

1. We consider the total weighted flow time instead of Makespan.

2. We consider the precedence relations between FGs to do a given work.

32 Simulated Annealing

3. We consider workforces with different proficiencies, and overtime and subcontracted
workers simultaneously.

2.5 Typical data set

For illustration, a typical data set with 10 work requests and 4 Field groups (mechanical,
electrical, pipefitting and lubrication proficiencies) inspired by the real data is presented in
this section. Consider a one-week planning horizon with 5 workdays and 2 holidays
(weekend). Each workday consists of 8 hours regular time and 4 hours overtime and each
holiday includes 4 hours overtime for each internal worker. Moreover, 4 hours in each
workday is available for each subcontracted worker as an external labour. Subcontracted
workers don’t work on weekends. Other information related to work requests and FGs are
presented in Tables 1 to 3. The expected duration of each work request by each FG (in terms
of man-hour), submission time and unscheduled shutdown (in terms of hours), and also the
weight of work requests are shown in Table 1. Table 2 shows the workforce availability in
regular time, overtime and contracting. In Table 3, the precedence relations between FGs
associated to each work are shown (in all tables FG stands for field group).

Man-hour W1 W2 W3 W4 W5 Weé W7 W8 W9 W10

FG1 0 0 19 8 6 0 0 0 8 0
FG2 18 13 15 0 11 4 11 13 10 4
FG3 15 2 17 11 18 15 3 0 12 0
FG4 6 5 18 0 0 3 0 12 0 0

Submission time 57.6 43.3 1621 49.82 4.86 3149 873 3917 194 4532

Due date 170.86 109.78 214.26 11512 11711 10281 9994 11949 11241 113.51
Shutdown 0.21 0.36 0.12 0.37 0.21 0.34 0.26 0.3 0.22 0.35
Weight 0.58 0.98 0.33 1 0.58 0.92 0.72 0.81 0.59 0.96

Table 1. Work request Information

Size Cost per hour per man ($) Availabilit}(/h%e:‘r(:)ay perman
Regular Overtime Contracting Fixed Overtime Contracting Regular Overtime Contracting
time Cost time
FG1 9 8 3 2 22 29 8 4 4
FG2 9 5 3 4 24 27 8 4 4
FG3 10 7 3 4 20 28 8 4 4
FG4 8 6 2 4 24 28 8 4 4

Table 2. Field group Information

Multi-objective Simulated Annealing for a Maintenance Workforce Scheduling Problem:

A case Study 33
FG W1 W2 W3 W4 W5
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 0 0 0 o0 0 0 0 O 0 0 1 o0 0 0 0 ©0 0 1 1 0
2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 O 0 0 0 0
3 0 1 0 O 0 0 0 0 0 0 0 1 1 0 0 O 0 0 0 0
4 o 0 1 0 0 0 1 O 0o 0 0 o0 0 0 0 O 0 0 0 0
FG W6 W7 W8 W9 W10
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 0 0 0 0O 0 0 0 o0 0 0 0 © 0 0 0 O 0o 0 0 o0
2 0 0 0 1 0o 0 0 o0 0 0 0 1 0 0 1 O 0o 0 0 o0
3 0 0 0 1 0 1 0 0 0 0 0 ©0 1 0 0 O 0 0 0 o0
4 0o 0 0 O 0 0 0 0 0 0 0 O 0 0 0 O 0 0 0 O

Table 3. Precedence relations

3. Multi-objective simulated annealing

As depicted earlier, MWSP is an extended version of the job shop scheduling problem and
obviously it is NP-hard and cannot be solved in a reasonable time using an exact approach
for the real-sized problems. This reasoning was a motivation to develop a MOSA approach
to solve the MWSP. In this section, the preliminary definitions and concepts of the multi-
objective optimization are presented to illustrate the performance of the MOSA. Also, the
MOSA’s literature is completely reviewed.

3.1 Multi-objective optimization

In multi-objective optimization problems, we attempt to simultaneously optimize a number
of conflicting objective functions in which the objectives are non-commensurable and the
decision-maker has no clear preference for the objectives relative to each other. Without loss
of generality, we will assume that all objectives are of the minimization type. A
minimization multi-objective decision problem with K objectives is defined as follows:
Given an n-dimensional solution space S of decision variables vectors X={xy,...,xn}, find a
vector X* that satisfies a given set of criteria depending on K objective functions
Z(X)={Z1(X),...Zx(X)}. We wish to find an “ideal” vector X* that minimizes all objective
functions simultaneously which is usually not possible. The solution space S is generally
restricted by a series of constraints, such as gj(X*) = b; for j= 1,...,m, and bounds on the
decision variables. In many real-life problems, objectives under consideration conflict with
each other. Hence, optimizing vector X with respect to a single objective often results in
unacceptable results with respect to the other objectives. Therefore, a perfect multi-objective
solution that simultaneously optimizes each objective function is almost impossible. A
reasonable solution to a multi-objective problem is to investigate a set of solutions, each of
which satisfies the objectives at an acceptable level, and without being dominated by any

34 Simulated Annealing

other solution. We summarize the multi-objective optimization area within the following

definitions (Zitzler & Thiele., 1998):

o Dominant solution: If all objective functions are used for minimization, a feasible
solution X is said to dominate another feasible solution Y (X >7Y), if Z(X)<Zi(Y) for
i=1,...,K and Z;(X)<Z;(Y) for at least one objective function j.

e Pareto optimal (Efficient) solution: A solution is said to be Pareto optimal if it is not
dominated by any other solution in the solution space. A Pareto optimal solution
cannot be improved with respect to any objective without worsening at least one of
other objective.

e Pareto optimal set: The set of all feasible non-dominated solutions in S is referred to as
the Pareto optimal set. For many problems, the number of Pareto optimal solutions is
enormous (perhaps infinite).

e Pareto front: For a given Pareto optimal set, the corresponding objective function vector
values in the objective space are called the Pareto front.

The ultimate goal of a multi-objective optimization algorithm is to identify solutions in the

Pareto optimal set.

3.2 Literature on MOSA
Numerous approaches have been developed in the literature with the aim of determining
the Pareto optimal set using SA. A comprehensive review of SA based optimization
algorithms to tackle multi-objective problems can be found in Suman & Kumar (2006). The
first MOSA method has been proposed by Serafini (1992). The algorithm of the method is
almost the same as the algorithm of single objective SA. The method uses a modification of
the acceptance criteria of solutions in the original algorithm. Various alternative criteria
have been investigated in order to increase the probability of accepting non-dominated
solutions. A special rule given by the combination of several criteria has been proposed in
order to concentrate the search almost exclusively on the non-dominated solutions.
Suppapitnarm & Parks (1999) proposed a multi objective SA method, namely
Suppapitnarm-MOSA, in which only one solution is used and the annealing process adjusts
each temperature independently according to the performance of the solution in each
criterion during the search. The concept of archiving the Pareto optimal solutions with SA
has been initially used by Suppapitnarm et al., (2000). In their study, an archive set stores all
the non-dominated solutions between each of the multiple objectives. A new acceptance
probability formulation based on an annealing schedule with multiple temperatures (one for
each objective) has also been used. The acceptance probability of a new solution depends on
whether or not it is added to the set of potentially Pareto-optimal solutions. If it is added to
this set, it is accepted to be the current solution with probability equal to one. Otherwise, a
multi-objective acceptance rule is used.
Ulungo et al., (1999) proposed another MOSA method in which for a multi-objective
problem, a move from the present position to a new position can result in three different
possibilities:
a) Improving moves with respect to all objectives is always accepted with probability one.
b) Simultaneous improvement and deterioration with respect to different objectives. In
this case neither the new move nor the current solution dominate. Therefore, the
strategy devised must be sound enough to discriminate between the new and the
current solutions.
c) Deterioration with respect to all objectives is accepted with a given probability.

Multi-objective Simulated Annealing for a Maintenance Workforce Scheduling Problem:
A case Study 35

Their method uses a strategy called the criterion scalarizing strategy since probability to
accept the new solution must take into account the distance between the old and the new
move. This strategy maps the multi-dimensional criteria space into a one-dimensional space.
Thus, this strategy works with a predefined diversified weight vector. This set of weights is
uniformly generated. Two scalarizing functions have also been used: the weighted sum of
objectives and the Chebyshev norm (Teghem et al., 2000).

Czyzak, & Jaszkiewicz (2000) proposed a MOSA approach by combining SA with a genetic
algorithm (GA). This method uses the concept of neighborhood, acceptance of new solutions
with some probability and annealing schedule from SA and the concept of using a sample
population of interacting solutions from GA. Their method uses scalarizing functions based
on probabilities for accepting new solutions. In each iteration of the procedure, a set of
solutions called generating samples controls the objective weights used in the acceptance
probability. This assures that the generating solutions cover the whole set of efficient
solutions. One can increase or decrease the probability of improving values of a particular
objective by controlling the weights. The higher the weight associated with a given
objective, the lower the probability of accepting moves that decrease the value of this
objective and the greater the probability of improving the value of this objective.

Suman (2002) proposed a MOSA approach to tackle the constraint violations. The proposed
MOSA attempts to handle constraints within its main algorithm by using a weight vector in
the acceptance criterion by directing the move towards the feasible solutions. It does not use
any extra techniques such as the penalty function approach to handle constraints. It has
been shown that the substantial reduction in computational time can be achieved without
worsening the quality of solution with this method. The weight vector depends on the
number of constraints violated by the given solution and the objective function. Suman
(2005) proposed a MOSA approach using Pareto-domination-based acceptance criterion. He
uses an idea that a strategy of Pareto-domination based fitness can easily be adapted to
simulate annealing in the acceptance criterion. Here, fitness of a solution is defined as one
plus the number of dominating solutions in Pareto-optimal set (containing both feasible as
well as infeasible solutions). The larger the value of fitness, the worse the solution. Initially,
the fitness difference between the current and the generated solution is small and the
temperature is high so any move is accepted. This gives us a way to explore the full solution
space. As the number of iterations increases, temperature decreases and fitness difference
between the current and generated solutions may increase. Both make the acceptance move
more selective and it results in a well-diversified solution in true Pareto-optimal solutions.
Most of the proposed MOSA approaches, except Suppapitnarm-MOSA, use a kind of
scalarizing function for combining the objectives into a weighted summation term as
fitness/energy function to evaluate the solutions. However, it is unclear how to choose the
weights in advance. Indeed, one of the principal advantages of multi-objective optimization
is that the relative importance of the objectives can be decided with the Pareto front on
hand. To overcome this disadvantage, Smit et al., (2004) proposed a dominance based
energy function. According to this function, the energy value of solution x is equal to the
cardinality of set Fx — F where F is the best Pareto front obtained so far (archive of the
estimated Pareto front) and subset Fy contains all solutions belong to F that dominate x. This
function ensures that the new solutions that move the estimated front towards the true
(ultimate) Pareto front are always accepted. As the authors claim, a benefit of this energy
function is that it encourages exploration of sparsely populated regions of the front.

36 Simulated Annealing

However, the performance of this function highly depends on the cardinality of set F. That
is, when F is small the resolution in the energies can be very coarse, leading to a low
resolution in acceptance probabilities. To overcome this disadvantage, they artificially
increased the size of F using three methods: conditional removal of dominated points, linear
interpolation and attainment surface sampling.

4. MOSA to solve MWSP

The consideration of precedence relations in addition to interference relations causes the
size of the feasible space to decrease; however, it doesn’t mean the Pareto optimal set will be
achieved simply. Contrariwise, the ultimate Pareto optimal set will be difficult to access,
especially when the size of the problem increases. In this case, the population-based
algorithms such as Genetic Algorithms lead to infeasible solutions most of the time. This
reasoning became a motivation to select a single solution-based meta-heuristics such as SA
to solve the considered problem.

In our opinion, the method proposed by Suppapitnarm et al., (2000) is one of the best in the
context of the MOSA. In this method, we don’t need to determine a weight for each
objective function while all objectives affect the acceptance probability of the non-improver
solutions. Moreover, a new solution is accepted if it can be added to the best Pareto archive
set obtained so far. This strategy guarantees the continuous improvement of the current
Pareto front toward the ultimate one. Thus, we use Suppapitnarm-MOSA to solve the
MWSP. The specialization of the Suppapitnarm-MOSA to solve the MWSP is presented in
the following subsections, using the nomenclature presented in the Appendix.

4.1 Initial Temperature

According to the fundamental concepts of SA, non-improver solutions are accepted in the
primary iterations with high probability. Thus, we set the initial temperature (for each
objective) in such a way that the non-improver solutions are accepted with a probability of
about 95 percent in the primary iterations. The related pseudo code is shown in Figure 9
(Safaei et al., 2008). Parameter Q represents the number of samples.

Sub Initial Temperature()
For k=1 to K
For g=1to Q
Do
Generate two solutions X; and X; at random
LOOP UNTIL (Z(X1) = Z(X2))
_ |Zk (Xl)_Zk (Xz)l

Set T0
I —In(0.95)
Next g
Set T =(1/ Q)Y T
Next k
End Sub

Fig. 9. Pseudo code of the initial temperature generation subroutine

Multi-objective Simulated Annealing for a Maintenance Workforce Scheduling Problem:
A case Study 37

4.2. Solution representation

The main objective of the MWSP in this study is to determine the sequence of work requests
(works, for short) that must be done by each FG in such a way that some objectives are
optimized. Thus, the solution representation must determine the sequence of operating
works for each FG. To this propose, we consider a matrix consisting of K rows (number of
FGs) and M columns (number of works) to represent the solution to the MWSP. The solution
representation is shown in Figure 10 for typical solution X=[xijj]x.m where x;jj; =w means
that work w must be scheduled on jth position (i.e., [j]) in the sequence of works associated
with FG i. It should be noted that some of the entries in the solution representation are
inherently zero/null because all works need not be done by all FGs. For more clarity, an
example solution related to the data set presented in section 2.5 is shown in Figure 11.

FG1 | xipnp X1[j] X1[M]
FG2 | xop x2p2 X2[j] X2[M]
FGi | xip Xi[2] Xifj] XiM]
FGK | xxyy xx XK[j] XK[M]

Fig. 10. Solution Representation

W1 W2 W3 W4 W5 W6 W7 W8 W9 | W10
FG1 4 5 3 9 - - - - -
FG2 5 8 2 10 6 7 3 9 1 -
FG3 4 5 7 3 6 2 9 1 - -
FG4 3 8 1 6 2 - - - - -

Fig 11. An example solution for data set presented in section 2.5

4.3 Initial solution generation

In general, for better exploration of the feasible space, the initial solution is generated at
random. However, as discussed in Section 2, MWSP is actually a generalized job shop
scheduling problem with precedence constraints in addition to interference constraints
inherently embedded in the scheduling problems. Thus, the generating of a random solution
which simultaneously satisfies both precedence and interference constraints is one of the
most important portions of this research that makes it different from workforce scheduling
problems described in the literature. In this case, the applied approach for generating the
initial solution must maintain the CPU time on an acceptable level and use advantages of
the random generation.

To overcome this drawback, we introduce a recursive-sequential approach in which at each
iteration i, the sequence of works corresponding to FGi is randomly generated considering
the history of assignments in previous FGs 1,..., i-1 as well as the precedence relations. The
recursive procedure verifies the feasibility of the current assignment. This procedure uses
the information given in the matrix S =[syJx.x where S=R®R*®...®R*™?, in which s
€{0,1}, R=[ri]x«x; ra €{0,1} is the precedence relation matrix for a given work (see Figure 3)
and @ represents the Boolean summation operator (Seyed-Hosseini et al., 2006). Matrix S

38 Simulated Annealing

consists of all direct and indirect precedence relations between FGs to do a given work. In
other words, s; =1 means FGi is prior to FGI directly (i—I) or indirectly (i—...—[). This
recursive procedure prevents the creation of the infinite loop during the sequential
assignment process. An infinite loop is a sequence of the precedence and interference
relations that loops endlessly. A typical example of the infinite loop is shown in Figure 12. In
this figure, both works A and B must be done by both FGs i and . However, FGI is directly
prior to FGi, i.e., I — i, for work A and contrariwise FGi is indirectly prior to FGI for work B,
ie, i — k — I, where i<I<k. Assume that the sequence of works for FGi is already created
according to the sequential phase of the approach. Moreover, the sequence of works for FGI
is being preceded and for FGk has not created yet. Currently, work A is randomly selected
and would be scheduled immediately after work C on FGI. We want to check the feasibility
of this assignment. The completion time of work A on FGI is obtained as ctiy = ph, +cte-

Without loss of generality, we define the term acb that means for obtaining parameter g,
parameter b must already be determined. Thus, we have ct, <ty - Using the backward

recursive algorithm, the following infinite loop is obtained:
ct. ccty ccty ooty ooty ccty.- Thus, the assignment presented in Figure 11 is

infeasible. Consequently, the proposed approach doesn’t allow that work A is scheduled
after work B on FGI and so it must be scheduled before work B.

Clin clip
Plia 1 1
| 1
_[A e B

FGi i) | _

..... si(A)=1
P
s

FGI [B W////////ﬁzf C]"[A

I
mk/(B):1 ctic Cl‘[A
my(B)=1

vk B

Fig 12. Typical infinite loop

ctip

As an example, according to the precedence relations given in Table 3, for work 3, we have
(1—3) and for work 4, we have (3—1). Assume that works 3 and 4 are swapped together on
FG 3 in the solution presented in Figure 11. Thus, we encounter an infinite loop as: ctuc
ct37C ct3sC etz ctizc chisC ctiac ctzs. Thus, work 4 cannot be scheduled anywhere after work
3 on FG 3, if the sequence of works for FG 1 has already been fixed.

4.4 Neighbourhood solution generation
The swapping adjacent pair method is used to generate the neighbourhood solutions. At
first, two adjacent works on a FG are randomly selected and then are swapped together. The

Multi-objective Simulated Annealing for a Maintenance Workforce Scheduling Problem:
A case Study 39

feasibility of this change is checked by the recursive procedure explained in the previous
section.

A stochastic sampling scheme of size 1000 within the objective function space is used to
verify the efficiency of the applied strategy. The scatter diagram corresponding to this
sampling is shown in Figure 13. Point A represents the initial solution and other points are
generated by the swapping adjacent pair method. Point B is associated with the best
obtained solution. As it can be seen in this figure, this method can correctly navigate the
solution space. Our reason for it is that the generated solutions have an improvement trend
in terms of the objective function values as the best obtained solution (Point B) improves
each objective function by about 50% compared with the initial solution (Point A). It should
be noted that this sampling is completely random, without using an improvement criterion.
In other words, the results indicate that the probability of the improver movements is
significantly greater than non-improver ones and hence the strategy used is a proper one to
explore the solution space.

12000 . ',. - . A
. :) e s s
11000 xS
”.."' “ - ¥ -
o g oo
- . - .
~ 10000 st e
@ & : e
% -“-.. -.‘:“:2‘ 9.‘.“}. t
g o000 P <A
8 PR L S
8000 : . o
6000
400 500 600 700 800 00 1000 1100 1200
Objective 1

Fig 13. Scatter diagram related to the stochastic sampling of the neighbourhood solution
generation method

4.5. Cooling schedule
The classical cooling schedule of SA is used for each temperature (one for each objective) as
Tt" = aTt’i § where « is the cooling rate or decrement factor and k=1,2.

4.6 Fitness function

As mentioned in Section 3, the MWSP involves two conflicting objectives: minimizing the
TWEFT versus minimizing the WfC. Even though, the generated solutions satisfy the
precedence and interference constraints, there are still two restrictions which must be
considered by the generated solutions. These two restrictions are the due date of the works
and the workforce resource limitations in regular time, overtime and contracting. To this
end, we consider two penalty functions, one for each objective. The first penalty function
(PFy) that is added to the first objective as Z;=TWFT+APF; penalizes the solutions violating
the due date of some works. Parameter A represents the penalty coefficient which is a large
positive number. Likewise, the second penalty function (PF») that is added to the second
objective as Z;=WfC+APF; penalizes the solutions violating the workforce limitations. These

40 Simulated Annealing

penalty functions lead the infeasible solutions toward feasible space. The mathematical
expressions of the obtained fitness functions are given in Eq. (1) and (2):

M M
Z,=min Y w, (rw, -r,)+AY max{rw, -d

m=1 m=1

0}, 1)

m’

K
Z, =min Z(ckrfk +¢, max {min (rfer sy +schy) —s.hy, 0}

k=1

+c] max{min(rfk, shy +sph' +sphy) —s by — s, ,O})

K
+Ay max{rf, —(sh, +s;h'+s{h"), 0}, @
k=1
The release time of work m is recursively computed as follows:

rw, = %%{ctkm}; ct,,, =pt,, + max{ z,-n;}nixl{Ct””}’Ctk”’r"‘} ,m=1,2,.,M, ()
where 1 represents the work that must be scheduled immediately before work m for FG k.
Initial values are ct,, = pt,, for each k.

4.7 Acceptance strategy

Similar to the SMOSA, an archive set stores all the non-dominated/Pareto solutions
between each of the multiple objectives. The acceptance probability of a new solution
depends on whether or not it is added to the set of potentially Pareto-optimal solutions. If it
is added to this set, it is accepted to be the current solution with probability equal to one.
Otherwise, it is accepted with the following probability.

p :min{l,exp[_%zl]xexp['izzz]} “)

InEq. (4), AZ, =Z,(Y)-Z,(X) in which X is the current solution and Y is a neighbourhood

solution resulting from X using the neighbourhood solution generation method.

4.8 Stoppage criteria

The MOSA algorithm is stopped when one of the following criteria is satisfied:
1. Maximum number of consecutive temperature trails (R).

2. Minimum allowable value of temperatures (final temperature) (Tj).

3. Maximum elapsed time after the last updating of Pareto archive set (fmax)-

4.9 Lower bounds for objective functions
As mentioned before, a large amount of time is needed to obtain the Pareto optimal set for
MWSP. Hence, due to unavailability of Pareto optimal set for comparison and having an

Multi-objective Simulated Annealing for a Maintenance Workforce Scheduling Problem:
A case Study 41

idea about the quality of the obtained Pareto solutions, a traditional methodology is to
compare the lower bound of the objective functions with the obtained Pareto front. In this
study, we use two different methods to obtain the lower bound of TWFT and WfC. The
lower bound of the first objective function, TWFTs, is computed assuming the processing of
each work by each FG is started immediately after submission or equivalently after
completion by the preceding FGs (no-wait strategy). The mathematical expression of
TWEFTs is given in Eq. (5):

TWFT,, = i w, (erB -7),

m m
m=1

LB LB . LB _ LB
rw.’ = max {ctkm}, Ctiy = Py, +Max{ max {ct,m },rm , ©)
1<k<K I g =1

where ct;® represents the possible earliest time of completing processing of work m by FGk.

The possible earliest time occurs when the processing of work m is started immediately after
submission by BU or completion by the preceding FGs. Initial values are ctlff = pt,, for each

k. The lower bound for the second objective function, WfCrs, is computed according to the
FIFO strategy in which the works are scheduled for each FG in increasing order of their
arriving times. In this case, FGs are scheduled independently as a single-machine
scheduling problem.

Although, the solutions under the obtained lower bounds are not necessarily feasible, the
obtained lower bounds can be considered as a criterion to measure the goodness of the
obtained Pareto front. In this case, we say the performance of the solution method is
acceptable, if under the same conditions, the relative gap (distance) between lower bounds
and obtained Pareto front is relatively small or at least does not increase significantly, while
the size of the problem increases. It is worth noting that the difference between TWFTis and
its optimal value will increase while the size of the problem increases. It is because the
precedence relations cause the waiting time of the in-process works to increase significantly.

5. Computational results

In this section, we verify the performance of the developed MOSA to solve the MWSP using
a number of numerical examples. Numerical examples are inspired by the real data and
generated randomly in pre-defined intervals. Ten numerical examples with 10, ..., 100,
works and 4 FGs are generated and solved by the developed MOSA. The details of these
examples are not given here. The number of FGs is constant for all problems, as in the real
case. MOSA is developed by Visual Basic 2008 on an x64-based multi-processor personal
computer with 8 Intel Xeon processors and 2 GB memory. Each numerical example is solved
10 times and the best Pareto solutions obtained are reported and then the corresponding
Pareto front is compared with the lower bound of the objectives. The parameter setting of
the developed MOSA is shown in Table 4. For tuning the MOSA’s parameters, some
examples with different sets of parameters were solved. In the end, we found that the
following parameter setting was effective to solve the MWSP. As it is evident from Table 4,
parameters N and R are considered as linear functions in terms of the problem size.

42 Simulated Annealing

Parameter Q a N R Ty Fmax A
Value M/2 0.95 10M 10M 0.01 120 Sec. 10

Table 4. MOSA parameter setting

In the first step, the numerical example presented in Section 2.5 is solved and the best Pareto
solutions are reported in Table 5. The average and standard deviation (SD) of TWFT and
WFC values associated with the obtained Pareto solutions are also presented in this table. As
it is evident from Table 5, the small values of SD imply that the algorithm converges to a
small region of the objective space. That means that the distance between the obtained
Pareto solutions is insignificant and the solutions have a relatively identical importance
degree from the decision making point of view. The small values of SD can be the necessary
condition for efficiency of the proposed method. However, the sufficient condition for
efficiency is that the ultimate/optimal Pareto front is also in this small region. This issue will
be discussed in below this section. For more clarity, the Pareto front associated with the
Pareto set indicated in Table 5 is shown in Figure 14.

Pareto No. TWFT WrC
1 24417 1531.48
2 259.76 1441.06
3 268.88 1433.06
4 247.18 1491.48
5 251.96 1453.36
6 265.99 1435.16
7 248.95 1469.92
8 254.39 1443.16
Average 255.16 1462.33
S.D 8.94 34.19

Table 5. Best Pareto solutions associated with the data set from Section 2.5

1540

1480

WIC

1460

laao

lazay

240 245 250 255 260 2b5 270 275

WTFT

Fig 14. Pareto front associated with the Pareto set indicated in Table 5

Likewise, the information related to the obtained Pareto solutions and Pareto front for the
numerical example with 20 works, i.e., 20x4, is provided in Table 6 and Figure 15. The same
reasoning applicable to the first test problem is also applicable to the second one.

Multi-objective Simulated Annealing for a Maintenance Workforce Scheduling Problem:

A case Study 43

Pareto No. TWFT WrC

1 147.77 1173.10

2 148.31 1171.42

3 149.30 1171.42

4 149.90 1157.10

5 151.10 1139.42

6 152.63 1129.74

7 155.84 1127.42

8 156.13 1123.58

9 157.86 1121.26

10 158.09 1117.26

11 158.66 1115.34

Average 153.24 1140.64
SD 418 23.16

Table 6. Best Pareto solutions associated to problem 20x4

1180 |
1170 | b e

1160 | \

1150 |

1140 | \

1130 |

1120 | \H‘

1110

WFC

146 148 150 152 154 156 158 160

WTFT

Fig 15. Pareto front associated with the Pareto set indicated in Table 6

The obtained results associated with the different real-sized problems are summarized in
Table 7 in terms of the mean of objective values, i.e., TWFTw and WfCw, corresponding to
Pareto solutions, lower bounds, CPU time, and relative gaps. The relative gap between
TWFTm and TWFTis is computed as their ratio. The relative gap between WfCu and WfCus is
computed as the relative difference between WfCw and WfCis, that is [(WfCwu-
WfCis)/ WfCis]x100. As shown in Table 7, by increasing the size of the problems, TWFT_Gap
doesn’t necessarily increase. Moreover, WfC_Gap is significantly small, which means that
the obtained WfCy values are very close to the optimal ones. Thus, according to the
discussion presented in Section 4.9 and earlier in this section, we can conclude the

44

Simulated Annealing

developed MOSA is a proper and robust approach to solve the considered MWSP. The
trend of the CPU time shown in Figure 16 can be estimated by the formula
CPUtime=51.21M2-216M+400, with R2= 0.97, which means the developed MOSA algorithm
is of a polynomial order, with a complexity degree O(M?2).

Test Problem Objective mean Lower bound CPU Gap
Planning time
Size cycle | TWFTw | WfCu | TWFTws | WfCts | (Sec) | mur | WEC (%)
(week)
10x4 1 255.16 | 146233 | 161.39 1321 34 1.58 10.69
20x4 1 153.24 | 1140.64 64.56 | 1080.70 | 252 2.37 5.54
30x4 1 637.53 | 1065.14 95.5 1005.84 | 329 6.67 5.89
40x4 2 173.72 | 2064.66 66.9 20625 | 528 2.59 0.10
50x4 2 186.97 | 1699.55 6748 | 1680.34 | 648 2.77 1.14
60x4 2 179.86 | 1820.8 59.17 | 1800.88 | 978 3.03 1.10
70x4 2 57218 | 2193.2 9231 | 2117.34 | 1136 | 6.19 3.58
80x4 2 248.07 | 2047.41 34.66 1991 1866 | 7.15 2.83
90x4 2 280.09 | 2618.21 34.69 2568.7 | 2416 | 8.07 1.92
100x4 2 386.45 | 1614.55 59.89 1539 3612 | 6.45 4.90

Table 7. Comparison between Pareto fronts and lower bound values

CPU time (Sec.)

Problem No.

Fig 16. Trend of CPU times according to the information provided in Table 7

10

Multi-objective Simulated Annealing for a Maintenance Workforce Scheduling Problem:
A case Study 45

6. Conclusion

In this chapter, we proposed a multi-objective simulated annealing (MOSA) algorithm to
solve a real maintenance workforce scheduling problem (MWSP) with the aim of
simultaneously minimizing the workforce cost and the flow time of the work requests. The
latter objective is equivalent to the maximization of the equipment availability because by
increasing the flow time of a work request the unscheduled shutdown of the corresponding
asset will increase too. Workforces have different proficiencies and are grouped into a
number of teams called “Field Groups” (or FG for short). Labour requirements are provided
from internal and external resources as regular time, overtime and contract.

We use a MOSA algorithm introduced in the literature namely Suppapitnarm-MOSA to
solve the MWSP. In this method, an archive set stores all the non-dominated/Pareto
solutions between each of the multiple objectives. The acceptance probability of a new
solution depends on whether or not it is added to the set of potentially Pareto optimal set.
However, all objectives affect the acceptance probability of a non-improver solution. The
developed MOSA uses the swapping adjacent pair strategy to explore the feasible solution.
One of the main differences between the current study and previous ones is that we
consider the precedence relations between FGs to do a given work request, in addition to
the traditional interference relations between work requests that must be scheduled for a
given FG. This extra assumption is a big obstacle to generating the feasible or
neighbourhood solutions. Hence, the single solution-based meta-heuristics such as SA or
Tabu search seem to be the unique alternatives to solve this problem. This is because
population-based operators, such as crossover in Genetic Algorithm, lead to infeasible
solutions most of the time.

To overcome this drawback, we introduce a recursive-sequential approach to construct the
sequence of works for each FG with the aim of identifying the infinite loops resulting from
consecutive interference and precedence relations.

Because the Pareto optimal set cannot be obtained in real-sized problems, a lower bound
was developed separately for each objective function and the obtained Pareto front is
compared with these lower bounds.

The obtained results show that the developed MOSA is a robust method to solve the MWSP.
Our reasoning is that the developed MOSA always converges to a small region of the
feasible space, very close to the lower bound of one of the objective functions while the
relative difference between the obtained results and the lower bound of another objective
function doesn’t increase significantly when the size of the problem increases.

7. References

Ahire, S.; Greenwood, G.; Gupta, A. & Terwilliger, M. (2000). Workforce-constrained
preventive maintenance scheduling using evolution strategies, Decision Science
Journal, vol. 31 (4), pp. 833-859.

Czyzak, P. & Jaszkiewicz, A. (1998). Pareto simulated annealing - a metaheuristic technique
for multiple-objective combinatorial optimization, Journal of Multi-Criteria Decision
Analysis, vol. 7, pp. 34-47.

46 Simulated Annealing

Quan, G.; Greenwood, G.W; Liu, D. & Hu, S. (2007). Searching for multiobjective preventive
maintenance schedules: Combining preferences with evolutionary algorithms,
European Journal of Operational Research, vol. 177, pp. 1969-1984.

Safaei, N.; Saidi-Mehrabad, M. & Jabal-Ameli, M.S. (2008). A hybrid simulated annealing for
solving an extended model of dynamic cellular manufacturing system, European
Journal of Operational Research, vol. 185 (2), pp 563-592.

Serafini, P. (1992). Simulated annealing for multiple objective optimization problems,
Proceedings of the Tenth International Conference on Multiple Criteria Decision Making,
pp 87-96, Taiwan, 19-24 July 1, 1992, Taipei.

Seyed-Hosseini, S.M.; Safaei, N. & Asgharpour, M.J. (2006). Reprioritization of failures in a
system failure mode and effeCS analysis by decision making trial and evaluation
laboratory technique, Reliability Engineering and System Safety, Vol. 91(8), pp. 872-
881.

Smith, K.I; Everson, RM. & Fieldsend, J.E. (2004). Dominance measures for multi-objective
simulated annealing, Congress on Evolutionary Computation (CEC2004), vol. 1, pp.23
- 30.

Suman, B. (2002). Multiobjective simulated annealing—a metaheuristic technique for
multiobjective optimization of a constrained problem, Foundations of Comput
Decision Science, vol. 27, pp. 171-191.

Suman, B. (2005). Self-stopping PDMOSA and performance measure in simulated annealing
based multiobjective optimization algorithms, Computs and Chemical Engineering,
vol. 29, pp. 1131-1147.

Suman, B. & Kumar, P. (2006). A survey of simulated annealing as a tool for single and
multiobjective optimization, Journal of the Operational Research Society, vol. 57, pp,
1143-1160.

Suppapitnarm, A. & Parks, T. (1999). Simulated annealing: an alternative approach to true
multiobjective optimization. Proceeding of Genetic and Evolutionary Computation
Conference. Conference Workshop Program, pp 406-407, Florida, Orlando.

Suppapitnarm, A.; Seffen, K.A.; Parks, G.T. & Clarkson., P.J. (2000). A simulated annealing
algorithm for multiobjective optimization, Engineering Optimization, vol. 33. pp. 59-
85, 2000.

Teghem, J; Tuyttens, D. & Ulungu, E.L. (2000). An interactive heuristic method for
multiobjective combinatorial optimization, Journal of Comput and Operations
Research, vol. 27, pp. 621-634.

Ulungu, E.L.; Teghaem, 1; Fottemps, Ph. & Tuyttens, D. (1999). MOSA method : a tool for
solving multiobjective combinatorial decision problems, Journal of multi-criteria
decision analysis, vol. 8. pp. 221-236.

Zitzler, E. & Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms: a
comperative case study. In: Eiben., AE., Back, T., Schoenauer, M. & Schwefel, H.P.
(eds). Parallel Problem Solving from Nature V. Springer, Berlin, Germany, pp 292-
301.

Multi-objective Simulated Annealing for a Maintenance Workforce Scheduling Problem:
A case Study 47

Yanga, T-H.; Yanb, S. & Chen H-H. (2003). An airline maintenance manpower planning
model with flexible strategies, Journal of Air Transport Management, vol. 9, pp. 233-
239.

Appendix: Nomenclature

MWSP:

M number of work requests (m=1,2,...,M)

K number of FGs (k=1,2,...,K)

Tm submission (ready) time of work m

Pluk man-hours required for FGk to process work m. This parameter is interpreted as the
duration or processing time of work m by FGk

Ak = if work m must be operated by FGk; and =0 otherwise

pma =1 if FGI must operate immediately before FGk on work m; and =0 otherwise
(precedence relations)

by hours available for FGk in regular time during the planning horizon

h hours available for FGk in overtime during the planning horizon

h*% hours available for FGk in contracting time during the planning horizon

Sk size of FGk in regular time during the planning horizon

5% size of FGk in overtime during the planning horizon

5% size of FGk as contract during the planning horizon

Cx fixed cost of FGk per hour

ck unit cost of FGk per hour in overtime

c’k unit cost of FGk per hour in contracting time

W weight (or importance degree) of work request w. We assume that

w, =1,/ max,, { z-m} , where 7, represents the unscheduled shutdown of work m

Clk completion time of work m by FGk

W release time of work m. The difference between rw,, and r,, is interpreted as
shutdown of work m

Tfn release time of FGk

MOSA:

a rate of cooling (decrement factor)

Tok initial temperature for objective k

T) system temperature in iteration f associated with objective k

Ty final temperature

48 Simulated Annealing

Zi(X) value of objective function k (or fitness function) for solution X. Here, k=1,2
N number of accepted solutions in each temperature (Epoch Length)

R maximum number of consecutive temperature trails

3

Using Simulated Annealing for Open Shop
Scheduling with Sum Criteria

Michael Andresen, Heidemarie Brasel, Mathias Plauschin

and Frank Werner
Otto-von-Guericke-Universitit Magdeburg, Fakultdt fiir Mathematik
Germany

1. Introduction

In this chapter, we consider the open shop scheduling problem which can be described as
follows. A set of njobs Ji, Jo, . . ., J. has to be processed on a set of m machines M, M, . . .,
M. The processing of job J; on machine M;is denoted as operation (i, j), and the sequence in
which the operations of a job are processed on the machines is arbitrary. Moreover, each
machine can process at most one job at a time and each job can be processed on at most one
machine at a time.

Such an open shop environment arises in many industrial applications. For example,
consider a large aircraft garage with specialized work-centers. An airplane may require
repairs on its engine and electrical circuit system. These two tasks may be carried out in any
order but it is not possible to do these tasks on the same plane simultaneously. Further
applications of open shop scheduling problems in automobile repair, quality control centers,
semiconductor manufacturing, teacher-class assignments, examination scheduling, and
satellite communications are described by Kubiak et al. (1991), Liu and Bulfin (1987) and
Prins (1994).

For each job J; i=1, 2, ..., n, there may be given a release date r; 2 0 which is the earliest
possible time when the first operation of this job may start, a weight w; and a due date d;> 0
by which the job should be completed. The processing time of operation (i,) is denoted as
ti. It is assumed that the processing times of all operations are assumed to be given in
advance.

Let C; be the completion time of job J;, i.e. the time when the last operation of this job is
completed. Traditional optimization criteria are basically partitioned into two types: either

the minimization of the maximum term max 1<y {fi(C)} or of the sum Y. f(C)) is

considered, where f;(C;) denotes the cost arising when job J;is completed at time C;. A typical
example of an optimization criterion of the first type is the minimization of makespan
Cnax = max 1<icy {Ci}, while a rather general example of a criterion of the second type is the

minimization of total weighted tardiness » 7 wT =Y " w,max{0,C, —d,} . If release dates
of the jobs are given, the latter problem is also denoted as O|}j. > 0| > w,T which is the most

general problem considered in this study.

50 Simulated Annealing

In the following, we first give a few comments on the open shop problem with minimizing
the makespan C,,; and then a literature review on such problems with sum optimization
criteria. Here we discuss only some papers dealing with arbitrary processing times.

Most papers in the literature dealt with the minimization of makespan. In view of the NP-
hardness of problem O | | Cpux, branch and bound as well as heuristic algorithms have been
developed for this problem. Among the exact algorithms, we only mention those given by
Laborie (2005) and Tamura et al. (2006) which were able to solve open benchmark instances
from the recent literature. In Laborie (2005), a complete search for cumulative scheduling
based on the detection and resolution of minimal critical sets was performed. The heuristic
for selecting such sets relied on an estimation of the related reduction of the search space,
where additionally an extension of the search procedure using a selfadapted shaving was
proposed. This approach was implemented on the top of classical constraint propagation
algorithms. The algorithm was able to solve the remaining 34 open instances out of the 80
instances with up to 10 jobs and 10 machines given by Gueret and Prins (1999). In Tamura et
al. (2006), a method to encode constraint satisfaction problems with integer linear
constraints into Boolean satisfiability problems was proposed. The effectiveness of this
approach was tested on several benchmark instances for the open shop problem. In
particular, this algorithm was able to solve all the 192 benchmark instances of three sets
from the literature (Brucker et al. (1997), Gueret & Prins (1999), Taillard (1993)).

Among metaheuristic algorithms, we only discuss two papers presenting simulated
annealing algorithms. The first algorithm by Liaw (1999) used particular neighborhoods
based on up to three pairwise interchanges of two adjacent operations belonging to the same
job or being processed on the same machine such that the resulting neighbor satisfies a
necessary condition for an improvement of the objective function value. The cooling scheme
was of the geometric type and used an initial temperature of 15. The recommended variant
had a low temperature reduction scheme (it used a reduction factor of 0.995 for the
temperature). The number of iterations with a constant temperature was set to be equal to
30 -n -m. Taking into account that at least 100 epochs with constant temperatures have been
considered per run in Liaw (1999) (usually even substantially more epochs), this means that
e.g. for problems with 20 jobs and 20 machines, at least 30 - 20 - 20 - 100 = 1, 200, 000
iterations had to be performed. Moreover, since five runs were made for each instance and
in one iteration of the algorithm, up to four neighbors were checked (see neighborhood NH;
in Liaw (1999)) and the best neighbor among them was then taken, much more than
6, 000, 000 feasible solutions had to be evaluated per instance to get the results presented in
Liaw (1999). Thus, extremely long runs of simulated annealing were considered in that
paper (up to 3.5 hours per single run of an instance with n = m = 30). On the other side, the
quality of the solutions obtained was comparable to the results obtained by the insertion
algorithm combined with beam search given in Brisel et al. (1993). In particular, comparing
the best results of some beam-insert variant from Brésel et al. (1993) with the best of the five
runs of the simulated annealing algorithm from Liaw (1999) on the 30 benchmark instances
with n = m e {10, 20, 30} given by Taillard (1993), the results were equal for 18 instances, 8
times the simulated annealing algorithm was better and four times the beam-insert
algorithm was better. A particle swarm algorithm combined with simulated annealing has
been given by Yang et al. (2006). For the simulated annealing routine, a very small initial
temperature of 2 was used. Computational results have been presented for some benchmark
instances with up to 20 jobs and machines given by Taillard (1993) (however, the values

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 51

stated as best known solutions in Yang et al. (2006) are rather far away from the real best
known solutions so that also the results presented in that paper are not competitive). For a
discussion of further exact and heuristic algorithms for open shop problems with
minimizing the makespan, the reader is referred to Andresen et al. (2008).

There exist only a few papers considering sum criteria. First, we discuss the papers dealing
with minimization of mean flow time (or what is the same, total completion time) in an open
shop. If preemptions are allowed, the two-machine problem is NP-hard in the ordinary
sense (Du & Leung (1990)) while the three-machine preemptive problem is NP-hard in the

strong sense (Liu & Bulfin (1985)). For problem O| pmtn|ZC,. , Brésel & Hennes (2004)

derived lower bounds and heuristics which have been tested on problems with up to 50 jobs
and 50 machines. For problems with a small number of jobs, the results with the heuristics
have been compared to the optimal solutions found by an exact algorithm.

Concerning non-preemptive problems, Achugbue & Chin (1982) proved that problem

02 "Z C,is NP-hard in the strong sense. Liaw et al. (2002) considered the problem of

minimizing total completion time with a given sequence of jobs on one machine. This
problem is NP-hard in the strong sense even in the case of two machines. A lower bound
has been derived based on the optimal solution of a relaxed problem in which the
operations on every machine may overlap except for the machine with a given sequence of
jobs. Although the relaxed problem is NP-hard in the ordinary sense, it can nevertheless be
rather quickly solved via a decomposition into subset-sum problems. Moreover, a branch
and bound algorithm has been presented and tested on problems with n = m. The algorithm
was able to solve all problems with 6 jobs in 15 minutes on average and most problems with
7 jobs within a time limit of 50 hours with an average computation time of about 15 hours
for the solved problems. A heuristic algorithm has been given which consists of two major
components: a one-pass heuristic generating a complete schedule at each iteration, and an
adjustment strategy to adjust the parameter used in each iteration. This algorithm has been
tested on square problems with up to 30 jobs and 30 machines. For the small problems with
at most 7 jobs, the average percentage deviation from the optimal value was about 4 % while
for larger problems, the average percentage deviation from the lower bound was about 8 %.
Brésel et al. (2008) presented a computational study of heuristic constructive algorithms for
mean flow time open shop scheduling. They compared matching heuristics, priority
dispatching rules as well as insertion and appending algorithms combined with beam
search on problems with up to 50 jobs and 50 machines, respectively. From Brasel et al.
(2008), it followed that the choice of an appropriate constructive algorithm strongly depends
on the ratio n/m. In particular, it turned out that for problems with n > m, the rather fast
algorithm beam-append was superior while for problems with n < m, the more time-
consuming algorithm beam-insert gave the best results. For the square problems with n = m,
an overlapping has been observed: For small problems, the beam-insert algorithm was
slightly superior while for larger problems, variants of the beam-append algorithm were
better. However, the algorithms were rather sensitive with respect to parameter settings.
Andresen et al. (2008) presented a simulated annealing and a genetic algorithm for the
problem of minimizing mean flow time. They tested their algorithms on problems with up
to 50 jobs when performing short runs, where every algorithm may generate 30,000
solutions. It has been found that in contrast to makespan minimization, the hardest
problems are those with n > m, while for problems with n < m, often a lower bound for the

52 Simulated Annealing

corresponding preemptive open shop problem (Brésel & Hennes (2008)) was reached. For
the hard problems, it was essential to use a good constructive initial solution and to start the
simulated annealing algorithm with an extremely small temperature.

Concerning approximation algorithms with a performance guarantee, the currently best
result has been given by Queyranne and Sviridenko (2000, 2002). They presented a 5.83-
approximation algorithm for the non-preemptive open shop problem of minimizing
weighted mean flow time which was based on linear programming relaxations in the
operation completion times. This was used to generate precedence constraints. For the
preemptive version of this problem, a 3-approximation algorithm has been given.

There exist some papers dealing with open shop problems and other optimization criteria
than makespan and mean flow time. Liaw (2004) gave a dynamic programming algorithm
for the two-machine preemptive problem of minimizing total weighted completion time.
Moreover, a restricted variant was given as a heuristic which was based on pairwise
interchanges in the job completion time sequence, i.e. the sequence in which the jobs are
ordered according to non-decreasing completion times. Computational experience has
shown that the dynamic programming algorithm can handle problems with up to 30 jobs
and that the heuristic has an average percentage deviation of less than 0.5 % from the
optimal value for these problems.

Liaw (2005) presented a branch and bound algorithm for the preemptive open shop problem
to minimize total tardiness. Computational results for the two-machine problem showed
that the algorithm can handle problems with up to 30 jobs. A heuristic procedure was also
given which determined in the g-th iteration the job to be placed in position g in the
sequence of the jobs ordered according to non-decreasing completion times. This was done
by means of the repeated solution of linear programs. The solutions obtained by the
heuristic algorithm had an average deviation of less than 2 % from the optimal value.
Blazewicz et al. (2004) considered open shop problems with a common due date, where the
goal is to minimize total weighted late work, i.e. the weighted portion processed after the
common due date. In addition to some complexity results, a polynomial algorithm for the
two-machine problem of minimizing total late work and a pseudo-polynomial algorithm for
the corresponding weighted case have been given.

In this chapter, we investigate the application of simulated annealing to open shop
scheduling problems with different sum criteria. The most general problem considered in
this work deals with the minimization of total weighted tardiness subject to given release
dates. Preemptions of operations are forbidden. The remainder of the chapter is organized
as follows. In Section 2, we introduce the mathematical model used for describing feasible
solutions. In Section 3, we discuss the components of the simulated annealing algorithms
considered in our study. A detailed comparative study for the different types of problems is
presented in Section 4. In particular, we discuss the influence of the initial solution, the
parameters of the algorithms and the problem type in terms of n and m, release dates,
processing times, weights and due dates of the jobs and compare the results for short and
longer runs. Moreover, a comparison with a genetic algorithm is performed to test the
influence of the use of a population. Section 5 contains some conclusions and summarizing
recommendations.

2. Basic notions

Next, we describe the mathematical model for representing feasible solutions for the open
shop problem. In the following, we use the digraph G(MO, JO) with operations as vertices

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 53

and arcs between two immediately succeeding operations of a job or on a machine. If we
place the operations in a rectangular array, where the operations of job J; are sequenced in
row i and the operations on machine M, in column j and draw an arc between immediately
succeeding operations of the same job or on the same machine, we get the graph G(MO, JO)

= G(MO) U G(JO), where G(MO) contains only horizontal arcs (describing the machine order

of the jobs) and G(JO) contains only vertical arcs (describing the job orders on the machines).
Example 1: Let the machine orders of the jobs be chosen as

J1:M3—>M1; J22M1—>M3—>M2; J3:M2—>M3—>M1

and, moreover, let the job orders on the machines be as follows:

M1:J2—>J1—>J3; M22J3—>J2; M31J1—>J3—>J2.
Figure 1 shows the graphs G(MO), G(JO) and G(MO, JO) (with the pair ij of job and machine

indices of the operations given inside the vertices).
QTD ®
$a
O E&—O ® o

O) 1) (i)
G(MO) G(JO) G(MO,JO)

®
T

& @® @@?

&

Figure 1. G(MO), G(JO) and G(MO, JO)

A combination of machine orders and job orders (MO, JO) is feasible, if G(MO, JO) is acyclic.
We call such an acyclic digraph G(MO, JO) a sequence graph. Note that all above graphs
represent partial orders on the set of operations. Similarly as in (Brdsel (2006), Brisel et al.
(1993), Werner & Winkler (1995)), we describe a sequence graph G(MO, JO) by its rank
matrix A = (ay), i.e., the entry a; = k means that a path to operation (i, j) with a maximal
number of operations includes k operations. Due to this property, equality a; = k implies that
there is no other operation with rank k in row i and column j, and the so-called sequence
property is satisfied: ‘For each a;; =k > 1, the integer k — 1 occurs as entry in row i or column j
(or both).” Now we assign the processing time t; as the weight to operation (i, j) in G(MO,
JO). The computation of a longest path to the vertex (i, j) with (i, j) included in an acyclic
digraph G(MO, JO), i.e. a path for which the sum of the vertex weights is maximal, gives the
completion time c;; of operation (i, j) in the semiactive schedule C = (c;). We remind that a
schedule is called semiactive if no operation can start earlier without changing the
underlying sequence graph.

Example 2: Consider an open shop problem with n = 3 jobs and m = 3 machines. Let the release dates
of the jobs be given as follows: r1 = 3, r2 =1, r3 = 6. The job weights are w; = 1,w; = 4wz = 2.
Moreover, the due dates of the jobs are given as follows: d; = 10, d> = 13, d3 = 18. The matrix T of the
processing times of the operations is given as

54 Simulated Annealing

4 - 5
T=12 3 3
5 1 2

(note that job |1 has to be processed only on machines My and Ms). Assume that the job and machine
orders are chosen as in Example 1. The resulting graph G(MO, JO) corresponds to the rank matrix

2 -1
A=|1 4 3
3 1 2

For this instance, we obtain the following schedule C from the given matrix of processing times T =
(t;) and the rank matrix A = (a;):

12 - 8
C= 3 16 13
17 7 10

Thus, we obtain the completion times C1 = 12,C2 = 16 and Cs = 17. For the optimization criterion
F = Zw;T;, we get the objective function value

F = w; -max{0,C; — di} + wa - max{0,Cy — d2} + w3 - max{0,C5 — d3}
= 1-max{0,12 — 10} + 4 - max{0,16 — 13} + 2 - max{0,17 — 18}
1-24+4-34+2-0=14.
It can be noted that the advantage of the use of the rank matrix in contrast to the usual
description of a solution by a permutation (i.e. sequence) of the operations is the exclusion

of redundancy: different rank matrices describe different solutions while different operation
sequences may describe the same solution. For example, both the permutations

OP' = ((1,3),(3,2), (2,1),(1,1),(3,3), (2,3),(3,1),(2,2))

and

OP2 = ((27 1)7 (37 2)7 (17 3)’ (3’ 3)7 (1’]‘)7 (37 1)? (27 3)? (27 2))

represent the same sequence graph given as G(MO, JO) in Fig. 1. Considering e.g. the
operations to be processed on machine M3, we have in both permutations OP! and OP? the
same sequence

((L,3),(33),(23)),

i.e. both permutations represent the same chosen job order on Ms: J; — J3 — J». This is also
true for the remaining job orders and all machine orders of the jobs. Moreover, there exist at
least 3! - 2! - 2! - 1! = 24 permutations of the operations which represent the same job and
machine orders as the rank matrix A since there are three operations with rank 1, two
operations with rank 2, two operations with rank 3 and one operation with rank 4 in A. In
general, the problem of counting possible extensions of a partial order (as it is given e.g. by a
rank matrix of a sequence graph) is #P-complete (see Brightwell & Winkler (1991)).

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 55

3. Simulated annealing algorithms

In this chapter, we focus on the application of simulated annealing algorithms for solving
open shop problems with different sum criteria. One of the major goals of this study consists
in finding similarities and differences in the recommendations for the parameters of the
algorithms for the different types of problems.

It is well-known that simulated annealing is an enhanced version of local search. Annealing
refers to the process when physical substances are raised to a high energy level and then
gradually cooled until some solid state is reached. The goal of this process is to reach the
lowest energy state. In this process physical substances usually move from higher energy
states to lower ones if the cooling process is sufficiently slow. However, there is some
probability at each stage of the cooling process that a transition to a higher energy state will
occur, but this probability of moving to a higher energy state decreases in this process.

In terms of our open shop model, a basic simulated annealing algorithm starts with
generating an initial solution (rank matrix) A. Then a neighbor (rank matrix) A* of rank
matrix A is generated and the difference A= F(A*)-F(A) in the objective function values of
both schedules is calculated. If A < 0, the neighbor A* is accepted as the new starting
solution in the next iteration since it has a better function value. If the objective function
value does not decrease (i.e. A 2 0), the generated neighbor may also be accepted with a
probability exp(—A / T), where T is a control parameter called temperature. This temperature
is periodically reduced by a cooling scheme every EL iterations, where EL is a preset
parameter called the epoch length. As a stopping criterion, one may use e.g. a given number
of iterations, a time limit or a given number of iterations without an improvement of the
best objective function value. In the first two cases, one must adjust the cooling scheme in
such a way that the algorithm stops with a sufficiently small temperature. In our tests, we
investigate in particular the influence of the chosen neighborhood and the cooling scheme.

3.1 Neighborhoods

First, we briefly discuss the generation of neighbors of a current solution described by the
rank matrix A of a sequence graph G(MO, JO). In the case of a job shop problem, often a
neighbor is generated by interchanging two adjacent jobs in exactly one machine order (this
means that the ranks in the current rank matrix are changed in such a way that in exactly
one machine order two adjacent jobs have been interchanged). We denote this
neighborhood as machine oriented API neighborhood, abbreviated as API(MO). In an open
shop problem we can, due to symmetry, also consider a neighborhood based on adjacent
pairwise interchanges in the job order on a machine, abbreviated as API(JO). In our
algorithms, we use the union of both neighborhoods, abbreviated as APIL. This means that,
in order to generate a neighbor, the rank matrix is modified such that exactly in one job or
machine order, two adjacent operations are interchanged. Thus, in order to generate a
neighbor, an operation (i, j) is randomly selected and then it is interchanged with the
predecessor or successor operation on machine M; or of job Ji. One of these (at most) four
possibilities is randomly chosen. If the pairwise interchange leads to a feasible schedule, it is
accepted as the generated neighbor, otherwise another second operation is chosen to
perform an adjacent pairwise interchange in a job or machine order. Note that the adjacent
pairwise interchange always leads to a feasible solution if the ranks of the two chosen
operations differ only by one. As a consequence, if the first operation has been chosen, one
of the at most four possibilities for generating a neighbor in the API neighborhood always
leads to a feasible solution which follows from the sequence property stated in Section 2.

56 Simulated Annealing

Moreover, we consider the neighborhood k-API, in which a neighbor is generated from the
current sequence graph G(MO, JO), respectively the corresponding rank matrix A, by
generating consecutively up to k neighbors in the API neighborhood (i.e. a path containing
up to k arcs in the resulting neighborhood graph is generated). When generating a neighbor,
the number sefl, 2, . . ., k} of interchanges of two adjacent operations of a job or on a
machine is randomly chosen. Note also that the neighborhood used in Liaw (1999) is a
subneighborhood of the 3-API neighborhood, where one or up to four neighbors with
specific properties have been generated per iteration.

As a generalization of the shift neighborhood for permutation problems we use a
neighborhood SHIFT, where exactly one operation is changed in the relative order of
operations, namely in such a way that either in the job order on one machine or in the
machine order of one job exactly one operation is shifted left or right. In order to generate a
neighbor, an operation (i, j) is randomly chosen. Then another operation belonging to the
same job or to be processed on the same machine is selected. Consider the first case (the
second one is analogue), and let (i, k) be the other chosen operation. If the rank aj is smaller
than a;; , the rank a; is modified such that operation (i, j) appears immediately before
operation (i, k) (it corresponds to a left shift of machine M; in the machine order of job J;). If
the rank ajy is larger than a; , the rank a; is modified such that operation (i, j) appears
immediately after operation (i, k) (it corresponds to a right shift of machine M; in the
machine order of job J;). Notice that usually the ranks of some other operations have to be
modified in order to maintain all established precedence relations. If the chosen shift leads
to an infeasible solution, this shift is not performed, and two other operations for
performing a shift are randomly chosen.

Another neighborhood considered is a restricted SHIFT neighborhood denoted as crit-
SHIFT. Here only such neighbors in the SHIFT neighborhood are considered which satisfy a
necessary condition for an improvement of the makespan value, namely a critical path (i.e. a
longest path among all paths ending in a sink of the corresponding sequence graph) in the
starting solution is “destroyed’, and there does not exist a path in the graph describing the
generated neighbor which contains the same vertices as this critical path of the current
starting solution. This neighborhood is based on the so-called block approach originally
introduced for shop scheduling problems with makespan minimization. Clearly, the crit-
SHIFT neighborhood is a subneighborhood of the complete SHIFT neighborhood.

In our experiments, we always randomly generate one neighbor in the chosen neighborhood
in each iteration. In particular, we do not consider such variants which investigate in one
iteration all or several neighbors of the current starting solution in a particular
neighborhood and select the best neighbor as the generated one to which the acceptance
criterion of simulated annealing is applied.

Example 3: We illustrate the API, SHIFT and crit-SHIFT neighborhoods discussed above by the
following example with n = 3 and m = 4. Let the current sequence graph be described by the rank
matrix

217 3
A=13 2 6 1
4 3 5 2

Assume that operation (3, 3) with as3 = 5 (given in bold face above) has been chosen randomly for
generating a neighbor in the API neighborhood. This operation (3, 3) is contained

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 57

a) in the machine order of job J3: My —M>— My — Mz and

b) in the job order on machine Ms: J3— > —]1.

Using this operation (3, 3), one can generate two neighbors in the API neighborhood (note that we
cannot generate four neighbors since machine Ms s the last one in the machine order of Jsand J5 is the
first job in the job order on machine Ms). If we interchange the machines My and M3 in the machine
order of job [3 (see a) above), we get the rank matrix

2 1 6 3
Al=13 2 5 1
5 3 4 2

as the generated neighbor in the API neighborhood. If we interchange the jobs Jsand]»in the job order
on machine M3 (see b) above), we get the rank matrix

2 1
A2=1] 3 2
4 3

Uk O
N =W

as the generated neighbor.

Next, we consider the generation of a neighbor in the SHIFT neighborhood. Let again (3, 3) be the
operation chosen first and assume that operation (3, 2) is selected as the second operation. Operation
(3, 2) is performed earlier and belongs to job J3 too. This means that operation (3, 3) will be shifted left
in the machine order of job [3 so that it is rescheduled directly before operation (3, 2). This gives the
rank matrix

2 1 5 3
A3A=13 2 4 1
5 4 3 2

of the generated neighbor (notice that the entries of some operations have to be changed in order to
maintain all precedence relations). Assume now that operation (1, 3) is chosen as the second
operation. This operation is performed later than (3, 3) on the same machine which means that
operation (3, 3) is shifted right in the job order on machine Mjs so that it is rescheduled directly after
operation (1, 3). This gives the rank matrix

215 3
At=[3 2 41
4 3 6 2
of the generated neighbor. So both rank matrices A3 and A* describe feasible neighbors of rank matrix

A in the SHIFT neighborhood.
Now assume that the processing times of all operations are equal to one. In this case, the makespan
value of rank matrix A is equal to 7, and a critical path contains e.g. the vertices

(L; 3, (2; 3, (3. 8, (3, 1) (2, 1), (2,2), (2, 4)

(note that the critical path is not uniquely determined for this instance). In this case, both rank
matrices A3 and A4 are also a neighbor of rank matrix A in the crit-SHIFT neighborhood (because in

58 Simulated Annealing

both cases operation (3, 3) is shifted to a position ‘outside’ the chosen critical path). In fact, both
neighbors lead indeed to an improvement of the makespan value: Cyax(A3) = 5 and Cpax(A%) = 6.

Considering e.g. the objective function F = Y. C, and assuming that all release dates are equal to

zero, the starting solution described by A has the function value F =7 + 6 + 5 = 18, and both
generated neighbors lead to an improvement of the objective function value: F(A3) = 5+4+5 =14 and
F(AY)=5+4+6=15.

3.2 Cooling schemes

Typical cooling schemes used in a simulated annealing algorithm are a geometric, a Lundy-
Mees and a linear reduction scheme. The three cooling schemes have been tested for open
shop problems with mean flow time minimization in Andresen et al. (2008). It has been
found that often the geometric scheme is slightly superior. In most other applications to
scheduling problems, a geometric cooling scheme is also preferred. Therefore, in the
following we test exclusively geometric schemes.

The geometric cooling scheme reduces the current temperature T° to the new temperature
Trew in the next epoch according to

TNew — (. Told,
where 0 <a <1.
In our experiments we fix the initial temperature 19, the epoch length EL and set the
temperature reduction factor a. in such a way that the final temperature is close to zero (we
always use Tend = 0.01 as the final temperature) taking into account that in our study, the
maximal number of generated solutions is settled in advance and therefore, the maximal
number of epochs with a constant temperature is fixed. Based on the experiments in
Andresen et al. (2008), we fix the epoch length as EL = 100.
In addition to the usual procedure of one cooling cycle, we also consider variants of
simulated annealing with several cooling cycles in one run, where the temperature
reduction is done faster within one run such that, if the final temperature is reached, the
procedure is restarted again with the initial temperature. This requires that the (maximal)
number of solutions to be generated in one run is settled in advance. The number CC
denotes the number of cooling cycles in one run of the algorithm.

4. Computational results

In this section, we present the computational results with the tested algorithms. First, we
describe the generation of the open shop instances in Section 4.1. Then we give some
comments on the generation of the initial solution in Section 4.2. In Section 4.3, we describe
the design of the comparative study. A detailed comparison of the simulated annealing
algorithms is made in Section 4.4. Finally, we compare the fast simulated annealing
algorithms with genetic algorithms from Andresen et al. (2008) in Section 4.5.

4.1 Generation of instances

For the comparative study, we consider all pairs (n,m), with n € {10, 15, 20, 30} and m < {10,
15, 20, 30} yielding a total of 16 combinations of m and n. In particular, there are four pairs
(n,m) with n = m, six pairs with n > m and six pairs with n < m.

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 59

For each pair (n,m), we generated several problem types differing in the job weights, the
processing times, the release dates and the due dates.

For the job weights, we considered the following two variants:

wl: All weights are equal to one: w;=1fori=1,2,..., n.

w2: The weights are uniformly distributed integers from the interval [1, 10].

For the processing times of the operations, we also consider two variants:

t1: The processing times are uniformly distributed integers from the interval [1, 100].

t2: The processing times are uniformly distributed integers from the interval [35, 66].

For the above two cases, we have chosen two uniform distributions having the same
expectation value of 50.5, but in the second case the standard deviation is substantially
smaller, namely a bit less than one third of the standard deviation in the first case.

For the release dates, we consider two different variants:

rl: All release dates are equal to zero: r;i=0fori=1,2,..., n.

r2: The release dates are uniformly distributed integers from the interval [0, 7], where

1 n m
Tmaz = % . Zzt”
i=1 j=1

In case 12, the value of 7. has been settled in such a way that it is equal to the half of the
average total processing time of a job.
For the due dates of the jobs, we considered the following three variants:
d1: The due dates of all jobs are equal to zero: d;=0fori=1, 2, ..., n (in this case, we have

the objective function) w,C, or its special case) C,).

d2: The due dates of the jobs are generated as follows:

m
diZTZ‘—FTF'Zti]’, i=1,2,...,n
Jj=1
with the tightness factor TF = 1.0 for problems with n < m and TF = 1.25 for the

problems with n > m.
d3: The due dates of the jobs are generated as follows:

m
di:Ti+TF'Ztija i:1,2,...,n
Jj=1
with the tightness factor TF = 1.1 for the problems with n < m and TF = 1.5 for the
problems with n > m.
While for the second variant d2 due dates are more tight, they are more lose for the third
variant d3. We have found that problems with n <m and TF > 1.2 tend to become rather easy
in the sense that often the best of the constructive procedures has an objective function value
of zero which means that the optimal solution has already been found. On the other hand,
larger tightness factors are of interest for the problems with n > m. So we decided to use
different tightness factors for the problem types with n <m and n > m under consideration.
Each problem type is described by a 4-tuple (w,t,r,d), For instance, the 4-tuple (w1,t1,r1,d1)

characterizes the open shop problem O"z C, of minimizing mean flow time when all

60 Simulated Annealing

release dates are equal to zero and processing times are taken from the interval [1, 100] (this
was the only problem type investigated in Andresen et al. (2008)). In our tests, we
considered problems of all possible 4-tuples. This gives altogether 23 -3 = 24 different types
of problems. For each of these types and any of the 16 pairs (1,1), we generated 20 instances,
giving a total of 24 -16 -20 =7, 680 instances.

4.2 Generation of the initial solution

Often initial solutions for shop scheduling problems are obtained by generating active or

nondelay schedules. A schedule is called active if no operation can be started earlier without

changing the underlying sequence graph and delaying some other operation. A schedule is

called nondelay if no machine is left idle provided that it is possible to process some job.

Obviously, any nondelay schedule is an active schedule, and any active schedule is a

semiactive one. Similarly as in Brisel et al. (2008) for mean flow time minimization, we have

found in initial tests that nondelay schedules are superior to active schedules for the

problems under consideration. Therefore, we exclusively used the generation of nondelay

schedules as fast constructive procedures.

The algorithms for constructing a nondelay schedule repeatedly append operations to a

partial schedule. Starting with an empty schedule (which is obviously a nondelay one),

operations are appended as follows: we determine the minimal head r of all unscheduled

operations. At time r, there exist both a free machine and an available job. To maintain the

nondelay property of the schedule, we have to append an operation which can start at time

r. Among all operations (i, j) with r;; = 7, choose one according to some priority dispatching

rule.

In our tests, we have used the following priority dispatching rules for generating a nondelay

schedule:

¢ RND (an operation is randomly selected)

e FCFS (first come first served, i.e. the operation that entered the queue first is chosen),

e SPT (shortest processing time),

e WSPT (weighted shortest processing time, i.e. the operation with smallest quotient f;/aw;
is chosen) and

e LPT (longest processing time),

e EDD (earliest due date)

4.3 Design of the comparative study

For each of the instances generated as described in Section 4.1, we first tested the different

simulated annealing variants. In particular, we have used the following simulated annealing

algorithms, differing in the construction of the initial solution, the stopping criterion, the

neighborhood and the cooling scheme.

Initial Solution: We consider one variant with a weak initial solution and one variant with a

better initial solution:

I1: The initial solution is determined by the generation of a nondelay schedule according to
the rule RND.

I2: The initial solution is determined as the best nondelay schedule obtained by the
application of all priority dispatching rules mentioned in Section 4.2.

Stopping criterion: We consider two variants with an a priori fixed number of iterations (i.e.

the number of generated solutions) and additionally one variant, where the algorithm stops

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 61

if no improvement of the best function value has been obtained for a certain number of

iterations. In particular, we use the following stopping criteria:

S1: The algorithm performs 30,000 iterations.

§2: The algorithm performs 200,000 iterations.

S3: The algorithm performs at most 200,000 iteration but stops, if no improvement of the
best objective function value has been obtained for 10,000 iterations.

Neighborhoods: The simulated annealing algorithm uses one of the four neighborhoods

discussed in Section 3:

N1: The algorithm uses the API neighborhood.

N2: The algorithm uses the 3-API neighborhood.

N3: The algorithm uses the SHIFT neighborhood.

N4: The algorithm uses the crit-SHIFT neighborhood.

Cooling Scheme: The geometric cooling scheme tested in our algorithms is characterized by

the initial temperature and the number of cooling cycles. For the initial temperature, we

used the following two variants:

IT1: The initial temperature is equal to 2.

IT2: The initial temperature is equal to 15.

For the number of cooling cycles, we considered the following two variants:

CC1: The number of cooling cycles is equal to 1.

CC2: The number of cooling cycles is equal to 5.

In our tests, we considered any possible combination of an initial temperature and the

number of cooling cycles, yielding four different cooling schemes.

Since we fixed the epoch length as EL = 100, this means that for variant CC1, the number of

epochs is equal to 300 for stopping criterion S1. Moreover, since we fixed the final

temperature as Ted = (.01, the reduction factor « in the geometric scheme is equal to

a = 0.983 for an initial temperature of 2 corresponding to IT1 and a = 0.976 for an initial

temperature of 15 corresponding to IT2. For variant CC2, the number of epochs per cooling

cycle is equal to 60. As a consequence, in each run the reduction factor « is equal to = 0.916

for an initial temperature of 2 and o = 0.887 for an initial temperature of 15.

For the long runs with stopping criterion S2, the number of epochs is 2,000 (for S3, the

maximal number of epochs is 2,000). Therefore, for variant CC1, the reduction factor « is

equal to o = 0.998 for an initial temperature of 2 and « = 0.997 for an initial temperature of

15. For variant CC2, the number of epochs per cooling cycle is equal to 400. As a

consequence, the reduction factor « is equal to « = 0.987 for an initial temperature of 2 and

a = 0.982 for an initial temperature of 15.

A particular simulated annealing variant is described by a 5-tuple. For instance, algorithm

(I2,52,N3,IT1,CC2) means that the best constructive solution is taken as initial solution,

200,000 iterations are performed, the SHIFT neighborhood is used and the cooling scheme is

characterized by an initial temperature of 2 and five cooling cycles. We have run simulated

annealing for any possible combination of a stopping criterion, use of a particular initial

solution, a neighborhood and a cooling scheme. This yields 3 -2 -4 -4 = 96 different

simulated annealing algorithms.

Concerning computational times we only mention that for the large problems with n = m =

30, the average computational time per instance for a variant with stopping criterion S2 is

198.3 s on an AMD Athlon XP 3200+. For smaller problems with n = 10 and m = 20, this

average computational time for a long run per instance is 19.8 s while for the corresponding

problems with n = 20 and m = 10, this average time is 22.2 s. We also note that one computer

of this type would require about 4,250 hours to perform all runs done in our study.

62 Simulated Annealing

4.4 Comparative study of simulated annealing

Before comparing the simulated annealing variants, we give a few comments on the
performance of the constructive algorithms. For n < m, we have found that the LPT rule is
clearly the best algorithm. It is followed by the rules RND, SPT and WSPT which yield
solutions of approximately the same quality. In particular, the rather good quality of the
RND rule is surprising. This rule is clearly better than the ECT and FCFS rules which are the
weakest constructive algorithms for problems with n < m. Problems with d3 tend to become
easy. In this case, the majority of the dispatching rules yield the best constructive solutions,
and many objective function values are equal or very close to zero. For the problems with n
> m, the LPT rule works bad. The best results have been obtained with the EDD, WSPT and
FCFS rules. If n = 30 and m = 10, the WSPT rule works good for problems with w2.
However, for problems with w1, the FCFS rule is clearly the best for problems with d1 and
the EDD rule is superior for the problems with d2 and d3. The observed trends are most
obvious for a large ratio of n/m (although, if the ratio n/m decreases, the observations are
similar but not so strong). For problems with n = m, all dispatching rules contribute best
values. In general, there is an overlapping of the observations for the problems with n < m
and n > m. We observed that the EDD rule is good for problems with rl1 and d3 while the
LPT rule works well for problems with r2.

For evaluating the 96 simulated annealing variants, we use a performance index defined as
follows. Let FAbe the heuristic function value obtained for a particular instance by algorithm
A, FCON Dbe the best function value obtained by some of the constructive procedures
mentioned in Section 4.2, and FBEST be the best function value obtained by one or several of
the 96 tested simulated annealing variants. In the case of FCON > (), the performance index PI
of algorithm A for this particular instance is given by

CON_ A .
Feon—frEsT + 100 it FEAST < pra « FYON

PI =
0 if PR = peoN

If FCON = (0, we define the performance indices of all simulated annealing algorithms with the
corresponding constructive initial solution to be equal to 100. Moreover, let PI(k) be the
percentage of the instances, for which a particular algorithm has obtained a performance
index of at least k. That is, PI(95) = 80 means that the algorithm under consideration has
obtained a performance index greater than or equal to 95 for 80 % of the instances. In the
following evaluations, we consider the performance indices PI(95) (which stands for an
excellent performance) and PI(75) (which stands for a good performance of the particular
algorithm).

First, we give some general observations from our study. Then we discuss separately the
results for the problems with n < m, n = m and n > m in more detail.

General Observations:

As a general observation we have found that the ratio of n and m influences the hardness of
the problems. Among the problem data, the range of the processing times and the job
weights have in particular an influence on the selection of an appropriate algorithm or the
quality of the results, while release dates and due dates have only minor influence.
Therefore, the recommendations in the following sections do not strongly depend on
different due dates and release dates. Hence, at most four algorithms (for any combination
of weights and processing times) are suggested for every stopping criterion S1, S2 and S3,

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 63

respectively. On the other side, the range of due dates influences the range of the objective
function values and their possible percentage improvements.
The use of the best constructive algorithm leads to better results with the simulated
annealing algorithms than the use of only a randomly generated initial solution. The choice
of an appropriate neighborhood turns out to be substantial for the quality of the results. An
appropriate initial temperature is at least for certain problem types important. In particular,
some problems with unit weights require a low initial temperature when using short runs
while for most problems with w2, the results with the different initial temperatures do not
differ very much. From an overall point of view, the number of cooling cycles per run has
only a small influence on the quality of the results. In general, algorithms with variant CC2
turn out to be a bit superior to those with CC1.
If one looks for an overall variant that performs well, we can recommend the algorithms
with a good initial solution, the use of the SHIFT neighborhood and a cooling scheme with a
low initial temperature and one or five cooling cycles.
Problems with n <m:
In Table 1, we summarize some results for the problems with n < m. The rows refer to the 24
different problem types described by a 4-tuple (w,t,r,d). In column 2, we present the average
objective function value FCON (rounded to integers) of the best constructive algorithm taken
over all instances of the six pairs (n,m) with n < m. In column 3, the average percentage
improvement PERC of the best function value obtained by the 96 simulated annealing
variants over the function value of the initial solution is given. In the remaining columns, we
present first the average performance index (columns AVG) of the corresponding algorithm
and then the values PI(95) and PI(75) (columns 95/75) for the recommended variants with
stopping criterion S1 (Alg 1), criterion S2 (Alg 2) and criterion S3 (Alg 3), respectively. In
particular, based on the experiments and the discussion below, we have chosen the
following algorithms:
Alg 1: algorithm (I2,51,N3,IT1,CC2) for problems with t1; algorithm (12,51,N1,IT2,CC2) for
problems with t2;
Alg 2: algorithm (12,52,N3,IT1,CC1) for problems with w1; algorithm (I12,52,N3,IT2,CC2) for
problems with w2;
Alg 3: algorithm (I2,83,N3,IT1,CC2) for problems with t1; algorithm (12,53,N1,IT1,CC1) for
problems with w1l and t2; algorithm (I12,53,N1,IT2,CC2) for problems with w2 and t2.
From Table 1 we see that there is a large range of percentage improvements over the
constructive algorithm for the particular types of problems. For problems with d1 (i.e.
minimization of mean flow time or its weighted version), the average percentage
improvements are very small (always less than 1 %). This corresponds to the observation for
problem type (wl,t1,rl,dl) in Andresen et al. (2008), where it has been found that the
solutions obtained by constructive algorithms are already almost optimal and often even a
lower bound for the corresponding preemptive problem has been reached. On the other
hand, problems with d3 tend to be easy in the sense that the initial solution has already a
function value close to zero. Note that for these problems, the performance indices of Alg 1 -
Alg 3 are strongly influenced by the large number of instances with FCON = 0, where the
performance index is 100 per definition. For problems with d2, substantial average
percentage improvements over the initial solution have been obtained. For these problems,
it is remarkable that rather small objective function values have been obtained by the best
simulated annealing algorithms although the tightness factor TF = 1 leads to tight due dates.

64 Simulated Annealing

As a consequence, there are only short waiting times of the jobs in the best solutions found.
Among all particular combinations of a problem type (w,tr,d) and a pair (n,m), we observe
that the absolute improvements of the average function values obtained by the best
simulated annealing variant over the average values of the initial solutions are up to 130
units for problems with w1 and up to 800 units for problems with w2. For problems with w1
and d1, they are typically around 50 units. However, from Andresen et al. (2008) it follows
that often the heuristic solution is equal or close to a lower bound for the optimal value of a

problem of type (w1,t1,r1,d1).

(w,t,r,d) FYON PERC Alg 1 Alg 2 Alg 3
AVG 95/75 | AVG 95/75 | AVG 95/75
(wltlrl,dl) [17,041 032 | 71 25/53 | 93 72/91 | 71 21/55
(wltlrl,d2) [160 362 | 70 22/49 | 93 66/91 | 71 22/51
(wl,t1,r1,d3) 2 97.5 | 100 100/100 | 100 100/100 | 100 100/100
(wLtlr2dl) | 21,238 023 | 71 22/50 | 90 63/88 | 69 22/58
(wltlr2,d2) | 166 393 | 70 21/48 | 90 60/87 | 70 23/53
(wltlr2,d3) | 03 98.3 | 100 100/100 | 100 100/100 | 100 100/100
(wLt2,r1,dl) | 17,009 055 | 56 13/30 | 78 46/64 | 49 15/29
(wlt2,r1,d2) | 161 62.9 | 54 14/28 | 75 40/63 | 50 16/28
(w1,t2,r1,d3) 0 100 | 100 100/100 | 100 100/100 | 100 100/100
(wLt2,r2,d1) | 21,156 033 | 58 20/41 | 78 45/70 | 53 24/33
(wlt2,r2,d2) | 118 69.8 | 54 21/35 | 77 44/67 | 51 19/31
(w1,t2,r2,d3) 0 100 | 100 100/100 | 100 100/100 | 100 100/100
(w2,t1,r1,d1) | 94,637 032 | 68 20/45 | 90 58/88 | 70 18/58
(w2,t1,r1,d2) | 835 416 | 68 21/47 | 91 63/88 | 71 22/60
(w2,t1,r1,d3) 8 98.0 | 99 98/98 | 100 99/100 | 100 99,/100
(w2,t1r2,d1) | 118,132 022 | 66 19/45 | 8 53/81 | 67 22/47
(w2,61,r2,d2) | 838 39.7 | 66 23/45 | 8 56/81 | 64 20/45
(w2,t1,r2,d3) 1 100 | 100 100/100 | 100 100/100 | 100 100/100
(w2,t2,r1,d1) | 94475 056 | 61 18/41 | 82 45/73 | 58 15/38
(w2,t2r1,d2) | 847 688 | 56 18/33 | 8 43/75 | 53 13/31
(w2,t2,r1,d3) 0 100 | 100 100/100 | 100 100/100 | 100 100/100
(w2,t2,r2,d1) | 117,665 032 | 58 26/40 | 83 51/73 | 55 21/38
(w2,62,r2,d2) | 594 73.7 | 56 24/39 | 79 43/73 | 55 23/38
(w2,62,r2,d3) 0 100 | 100 100/100 | 100 100/100 | 100 100/100
| average | | 751 47/61 [900 69/85 | 741 46/62 |

Table 1. Results for problems with n <m

Moreover, the use of the SHIFT neighborhood is clearly superior for the problems with t1. In
contrast, for most problem types with t2, both the API and 3-API neighborhoods are
superior to the SHIFT neighborhood when using shorter runs with stopping criteria S1 and
S3, and this tendency increases with the problem size. In addition, the API neighborhood is
slightly superior to the 3-API neighborhood. We observed that the superiority of the SHIFT
neighborhood in comparison with the two API-based neighborhoods is larger for problems
with t1 than the superiority of the API-based neighborhoods over the SHIFT neighborhood

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 65

for those with t2 for short runs. However, the SHIFT neighborhood becomes the single best
for the long runs with stopping criterion S2. The variants with stopping criterion S2 yield
the best results, often followed by the algorithms with S1 and finally those with S3 (an
explanation is given in the next paragraph). Variants with an initial temperature IT1 tend to
be superior to those with the initial temperature IT2, in particular for problems with w1, t1,
for which they are substantially better (for an arbitrary stopping criterion). Moreover, for
most problems algorithms with five cooling cycles work slightly better than variants using
only one cooling cycle. However, for the long runs with stopping criterion S2, the use of one
cooling cycle is slightly better for the problems with w1.
Next, we discuss the number of iterations executed in the case of stopping criterion S3. First,
taking the average number of generated solutions over all problems with n < m, this number
is up to 25 % for algorithms with N3 and only up to 12 % for algorithms with N1, N2 and
N4. In particular, for neighborhood N4 the algorithm stops very quickly. For problems with
w1, even for neighborhood N3 the algorithm stops after 5 % when using the larger initial
temperature IT2 and CC1. This means that for an initial temperature of 15, usually no
improvements over the function value of the initial solution are obtained. The percentage of
generated solutions is also larger for problems with t1 in comparison with the problems
with t2. The largest percentage of generated solutions was obtained for problem type
(w2,t1,r1,d1) as well as n = 20 and m = 30 using N3, IT1, CC2 and a random initial solution,
where 48 % of the iterations were executed. Comparing stopping criteria S1 and S3, we
observe that only for the SHIFT neighborhood usually more than 30,000 solutions were
generated for S3 while for the other neighborhoods, typically only around 20,000 solutions
have been generated.
Problems with n = m:
Some results for the problems with n = m are given in Table 2. The meaning of the rows and
columns is the same as in Table 1. Based on the experiments and the discussion below, the
following algorithms for the stopping criteria S1, S2 and S3, respectively, are included in
Table 2:
Alg 1: algorithm (I12,51,N1,IT2,CC2) for problems with wl and t2; algorithm (I2,51,N3,IT1,
CC2) for all other problems;
Alg 2: algorithm (12,52,N3,IT1,CC1) for problems with w1, algorithm (I12,82,N3,IT1,CC2) for
problems with w2 and t1; algorithm (I12,52,N3,IT2,CC2) for problems with w2 and t2.
Alg 3: algorithm (I2,S3,N1,IT2,CC1) for problems with t2; algorithm (I12,53,N3,IT1,CC2) for
problems with w1l and t1; algorithm (I12,53,N3,IT1,CC1) for problems with w2 and t1.
For the problems with wl and d1, the average percentage improvements are smaller than 1
%. These percentage improvements are larger for problems with w2 and t2. Here they are
up to 2.53 % for problem type (w2,t2,r1,d1) and n = m = 10. For problem type (w1,t2,r2,d3),
average percentage improvements of more than 90 % have been obtained and the final
average objective function values for the instances of the particular pairs (1,m) are between 0
and 10 so that many problems have been solved to optimality. When comparing the average
function values of the initial solutions with the average values by the best simulated
annealing solutions, the absolute improvements are up to 200 units for problems with w1
and up to 1,500 units for the problems with w2.
Among the neighborhoods, the SHIFT neighborhood is clearly on the first place followed by
the 3-API neighborhood (which is, however, substantially worse) when considering the
results for all pairs (n,m). The crit-SHIFT neighborhood works extremely weak. The use of a

66 Simulated Annealing

small initial temperature is slightly superior. In particular, for the long runs with
neighborhood N3 and stopping criterion S2, often the large initial temperature combined
with one cooling cycle works weak for problems with w1. In general, the use of five cooling
cycles is slightly superior in most cases. As for the problems with n < m, for the long runs
with stopping criterion S2, the use of one cooling cycle is better for the problems with w1
while the use of five cooling cycles is better for w2.

(w,t,r,d) FCON PERC Alg 1 Alg 2 Alg 3

AVG 95/75 | AVG 95/75 | AVG 95/75
(wltlrl,dl) | 22,362 0.60 39 0/1 68 14/38 | 41 1/10
(wl,tl,r1,d2) | 1,690 7.1 46 4/15 | 76 30/54 | 46 3/15
(wl,t1,r1,d3) 241 279 46 5/10 | 73 24/59 | 43 1/15
(wl,tl,r2,d1) | 26,962 0.55 46 4/11 | 77 30/55 | 52 8/19
(wl,t1,r2,d2) | 1,314 8.3 45 3/9 77 23/61 | 47 1/16
(wl,t1,r2,d3) il 41.3 50 4/18 | 76 30/59 | 52 4/25
(wl,t2,rl,d1) | 21,928 0.80 40 4/14 | 60 21/35| 42 8/18
(wl,t2,r1,d2) | 1,360 9.4 40 3/9 66 25/45 | 44 14/20
(w1,t2,r1,d3) 53 79.3 45 24/34| 69 35/53 | 40 20/26
(wl,t2,r2,d1) | 26,682 0.73 35 1/6 61 19/35| 38 4/11
(wl,t2,r2,d2) | 1,106 13.4 33 1/9 59 20/33| 31 3/10
(w1,t2,r2,d3) 51 93.7 57 25/31| 73 36/54| 38 11/23
(w2,t1,r1,d1) | 124,053 0.77 45 1/13 | 78 28/61| 50 5/20
(
(
(
(
(
(
(
(
(
(
(

w2,t1,r1,d2) | 8974 9.0 | 44 0/9 | 76 19/55 | 52 4/24
w2,t1,r1,d3) | 1,122 360 | 55 4/26 | 78 28/61| 51 8/33
w2,t1,r2,d1) | 150,066 0.53 | 46 1/11 | 76 23/59 | 56 3/25
w2,t1,r2,d2) | 7,140 89 | 43 0/9 | 75 19/58 | 51 0/20
w2,t1,r2,d3) | 790 409 | 57 4/29 | 84 40/78 | 57 5/35
w2.t2,r1,dl) | 121,067 1.33 | 45 1/16 | 80 26/63 | 39 5/14
w2,t2,r1,d2) | 7,404 171 | 48 4/15 | 79 41/68 | 42 3/19
w2,t2r1,d3) | 258 780 | 54 24/34 | 74 38/58 | 49 26/38
w2,.t2,r2,d1) | 148458 1.09 | 45 4/18 | 80 33/68 | 34 4/15
w2,t2r2,d2) | 5965 208 | 46 5/18 | 82 38/63| 32 0/9

w2,t2r2,d3) | 237 947 | 50 11/30 | 72 34/64 | 44 15/25

| average | | 45.7 6/16 | 73.6 28/56 | 44.6 6/20 |

Table 2. Results for problems with n =m

When looking at the instances of the particular pairs (n,m), we can note that there is a
tendency that with an increasing number of jobs, the API neighborhood becomes more and
more competitive to the SHIFT neighborhood. For the problems with n = m = 20, the API
neighborhood becomes superior for the problems with wl when using short runs. For the
problems with n = m = 30, the API neighborhood is also superior for most problem types
when using short runs and even for problems with wl when using long runs. This

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 67

corresponds to the observation in Andresen et al. (2008), where the API neighborhood
became superior for the short runs with problem type (w1,t1,r1,d1) and n > 20.
Moreover, for most problems with w1l and t2, it turned out that in the case of short runs
with stopping criterion S1, the recommended variant (12,51,N1,IT2,CC2) works not so good
for small problems with n = 10 while the use of the API neighborhood is clearly superior for
the larger problems with n > 20.
In addition, the variant (I12,53,N1,IT2,CC1) was recommended for problems with w2 and t2
from an overall point of view when using S3. However, for these problems the performance
depends also on the existence of release dates. In general, the API neighborhood is better for
the problems with r1 while the SHIFT neighborhood is better for the problems with r2 when
using S3 (the latter differs from the recommendation for Alg 3 made from an overall point of
view for the corresponding group of problem types). Nevertheless, in contrast to the above
comment, for the small problems with n = m = 10 and r1, the SHIFT neighborhood is
superior while for the large problems with n 2 20 and r2, the API neighborhood is clearly
superior. This coincides with the general observation that the SHIFT neighborhood is often
substantially better for small problems while the API neighborhood becomes better for the
large problems.
For stopping criterion S3, the number of performed iterations slightly increases with the
problem size. For problems with n = m = 20, up to 44 % of the iterations have been
performed when using the SHIFT neighborhood. The largest number of iterations were
performed for problems with t1. However, these numbers are substantially smaller for the
other neighborhoods. In particular, for the small problems with n = m = 10, the number of
performed iterations is roughly only the half of those for the large problems but in general,
these percentages for the large problems are still rather low. For a substantial number of
problems with d3, an objective function value of zero has been obtained for the long runs
with the SHIFT neighborhood.
Problems with n > m:
Some results for the problems with n > m are summarized in Table 3. The meaning of the
rows and columns is the same as in Table 1. Based on the experiments and the discussion
below, we have chosen the following algorithms for the stopping criteria S1, S2 and S3,
respectively:
Alg 1: algorithm (12,51,N3,IT2,CC2) for problems with w2 and t1, algorithm (I2,51,N3,IT1,
CC1) for all other problems;
Alg 2: (12,52,N3,IT2,CC2) for problems with w2; algorithm (I2,52,N3,IT1,CC2) for problems
with w1l and t1, algorithm (I12,52,N3,IT1,CC1) for problems with w1l and t2;
Alg 3: algorithm (I2,53,N3,IT1,CC1) for problems with wl and t2 as well as w2 and t1;
algorithm (I2,83,N3,IT1,CC2) for all other problems.
For the problems with d2 and d3, the average percentage improvements are much smaller
than for the problems with n < m. In particular, for the problems with n = 30 and m = 10,
these percentages are less than 1.4 % for the problems with w1. For the corresponding
problems with w2, these average percentages are between 3.2 and 4.8 %. In terms of the
objective function values, the absolute improvements of the function values are larger than
for the problems with n < m. More precisely, the absolute improvement of the average
function value obtained by the best simulated annealing variant over the average value of
the initial solution among all particular combinations of a problem type (w,t,r,d) and a pair
(n,m) is up to 230 units for problems with w1l and up to 2,800 units for problems with w2. In

68 Simulated Annealing

particular, for problem type (w1,t2,r2,d3) and the instances with n = 30 and m = 20, the
average function value of the initial solution is 233.5, but the average function value of the
best simulated annealing solution is only 3.4.

In general, it can be observed that the performance indices of the algorithms using the
SHIFT neighborhood and stopping criterion S2 are consistently rather large. One can also
note that long runs with the API-based and crit-SHIFT neighborhoods do not reach the
quality of short runs with the SHIFT neighborhood. As an exception, the crit-SHIFT
neighborhood works (surprisingly) good for the problems with n = 15 and m = 10 as well as
n = 30 and m = 20 for the problems with d3 (sometimes even better than the SHIFT
neighborhood). Variants with a low initial temperature ar mostly superior, and this
superiority is stronger than for the problems with #n < m. This becomes particularly obvious
for the problems with w1. For the short runs with stopping criteria S1 and S3, often the use
of one cooling cycle can be recommended.

(w,t,r,d) FCON PERC Alg 1 Alg 2 Alg 3
AVG 95/75 | AVG 95/75 | AVG 95/75
(wl,tl,rl,d1) | 26,932 0.69 49 0/9 86 41/76 59 3/22
(wltlrl,d2) | 5142 29 | 48 3/13 | 86 45/78 | 53 8/24
(wltlrl,d3) | 2,935 136 | 54 16/25| 86 51/75| 62 21/35
(wl,t1,r2,d1) | 29,207 0.63 52 0/10 87 37/80 65 8/28
(wl,t1,r2,d2) 3,953 5.2 50 1/13 85 43/77 57 5/24
(w1,t1,r2,d3) 2,070 28.4 63 27/39 91 63/83 68 32/47
(wit2,rl,dl) | 26,417 075 | 44 1/13 | 78 33/68 | 37 0/1L
(wl,t2,r1,d2) 5,558 4.4 46 5/19 72 32/56 35 5/12
(w1,t2,r1,d3) 3,180 32.9 44 18/23 71 36/54 38 18/22
(wit2,r2,d1) | 28,602 066 | 44 5/11 | 73 23/58 | 38 3/7
(wlt2,r2,d2) | 4,060 122 | 38 3/10 | 73 27/53| 28 1/9
(w1,t2,r2,d3) 2,304 51.9 60 31/38 87 64/75 54 30/38
(w2,t1,r1,d1) | 133,174 1.03 56 0/16 88 35/85 73 8/46
(
(
(
(
(
(
(
(
(
(
(

w2,t1,r1,d2) | 21,466 69 | 50 0/10 | 82 32/73| 65 11/45
w2,t1,r1,d3) | 11,848 16.1 | 52 13/21 | 85 43/72| 64 18/38
w2,t1r2,dl) | 151,172 098 | 52 0/8 | 87 32/84| 67 5/40
w2,t1,r2,d2) | 17471 84 | 49 0/9 | 80 23/63| 60 7/28
w2,t1,r2,d3) | 9,025 315 | 59 26/36 | 85 50/74 | 68 31/43
w2,t2r1,dl) | 126,784 2.03 | 61 4/28 | 87 42/83 | 68 8/44
w2,t2,r1,d2) | 17,057 109 | 52 3/18 | 83 38/73 | 53 4/26
w2,t2r1,d3) | 9,829 387 | 52 17/24 | 79 41/62 | 52 18/26
w2,t2r2,d1) | 145017 164 | 56 4/15 | 86 44/81| 62 9/30
w2,2r2,d2) | 13,994 176 | 50 3/13 | 81 35/71| 48 3/18
w2,t2,r2,d3) | 7,686 555 | 59 26/35| 88 59/78 | 62 28/33

| average | 51.6 8/19 | 82.8 40/72 | 55.6 12/29

Table 3: Results for problems with n > m

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 69

When looking at the instances of the particular pairs (1,m), we observe for the problems
with n =30 and m = 20, that the API neighborhood and also the 3-API neighborhood become
superior to the SHIFT neighborhood for short runs. This tendency is stronger for the
problems with wl. We note that this also corresponds to the observation in Andresen et al.
(2008), where the API neighborhood became superior for problems of the type (w1,t1,r1,d1)
with n > m 2 20. One can conjecture that such a trend becomes even stronger for larger
problems not considered in this study (see also Andresen et al. (2008)). For the long runs
with S2, the SHIFT neighborhood is still superior to the API neighborhood for almost all
problem types with n = 30 and m = 20. This observation is particularly obvious for the
problems with w2. An exception are problems of the types (w1,t2,r1,d3) and (w2,t2,r1,d3),
where both the API and the 3-API neighborhoods are clearly superior to the SHIFT
neighborhood. For stopping criterion S3, sometimes the SHIFT and in other cases the API
neighborhood works better. On the other side, for problems with n = 30 and m = 15 and
short runs with S1, the API neighborhood is only superior for some problem types with w1l
and t2.

When using stopping criterion S3, the largest number of performed iterations can be
observed for algorithms with the SHIFT neighborhood and a randomly generated initial
solution when n = 30 (the largest numbers of iterations have been executed for problems
with w2 and t1). In this case, up to more than 90 % of the maximal number of generations
have been generated. On the other side, in the case of a good initial solution the percentage
of performed iterations is mostly less than 30 %, and for the API-based neighborhoods both
with a weak and a good initial solution, these percentages are always less than 30 %, often
even substantially less. Nevertheless, on average, only for these problems with n > m, the
performance indices of the recommended algorithms with S3 are better than those of the
recommended algorithms with S1.

From an overall point of view it turned out that problems with n > m are the hardest ones, in
particular those with a large ratio n/m.

4.5 Comparison with a genetic algorithm

Genetic algorithms belong to the class of artificial intelligence techniques and they are based
on Darwin’s theory about ‘survival of the fittest and natural selection’. This type of
algorithms has been developed by Holland (1975), and one of the first genetic algorithms for
scheduling problems has been given by Werner (1984). A genetic algorithm is characterized
by a parallel search of the state space by keeping a set of possible solutions under
consideration, called a population. A new generation is obtained from the current
population by applying genetic operators such as mutation and crossover to produce new
offspring. The application of a genetic algorithm requires an encoding scheme for a solution
(also denoted as an individual), the choice of genetic operators, a selection mechanism and
the determination of genetic parameters such as the population size and probabilities of
applying the genetic operators.

In our tests, we use the genetic algorithm tested in Andresen et al. (2008) on the mean flow
time open shop scheduling problem. For a more detailed description of this algorithm, the
reader is referred to Andresen et al. (2008). Here, we use the recommended parameters, in
particular we use a mutation probability of 0.8 and a crossover probability of 0.2. The initial
population includes the best constructive solution of the algorithms described in Section 4.2
as one solution. We consider three variants of this genetic algorithm, denoted by

70 Simulated Annealing

GA(popsize), differing only in the population size popsize. In particular, we apply the variants
GA(10),GA(50) and GA(100).

We mainly compare the genetic algorithm with the short runs of simulated annealing
(stopping criterion S1). In Andresen et al. (2008), both the simulated annealing and the
genetic algorithms generated 30,000 solutions. However, the genetic algorithms needed
substantially larger computational times. In the following, for the genetic algorithms we
allow a time limit of two times the required average running times for the simulated
annealing algorithms with 30,000 generated solutions (estimated in advance).

For evaluating the genetic algorithms, we also use the performance index PI introduced in
Section 4.4. However, since we refer to the best value obtained by some simulated annealing
variant, the performance index can be greater than 100 for a particular instance, if a genetic
algorithm generates a better solution than the best one obtained among all simulated
annealing variants.

In Table 4, we present the average performance indices of the three genetic algorithms for
the 24 problem types, where again all pairs (1,m) of the corresponding relation between n
and m are considered. For n < m, it can be seen that in most cases a large population size of
100 is superior. Algorithm GA(10) is better than the recommended variant Alg 1 (but we
remind that the time limit for the genetic algorithms is roughly twice the time limit for Alg
1). However, on average, the performance of the long simulated annealing algorithms is not
reached. Moreover, the performance indices of the genetic algorithms depend on the
problem size. Sometimes the genetic algorithm reaches clearly a better performance (even
than the long runs of simulated annealing with stopping criterion S2). The largest
performance indices have been obtained as 143 for problem type (w2,t2,r2,d1) and as 137 for
problem type (w2,t2,r1,d2) for the problems with n = 10 and m = 15 both with algorithm
GA(100). On the other side, the performance index of algorithm GA(100) for the problems
with n =20 and m = 30 and type (w1,t1,11,d1) is only 14.

For n = m, it can be observed that an average performance index of more than 100 has been
obtained for 10 problem types both by algorithms GA(50) and GA(100). However, a large
range of the performance indices can be observed. The smallest index of algorithm GA(100),
namely 33, has been obtained for problem type (w1,t1,r1,d3) for the instances with n = m =
30. Concerning the large performance indices for problem type (w2,t2,12,d2), we note that
these two values for the algorithms GA(50) and GA(100) are strongly influenced by one
outlier instance, where simulated annealing works bad and the function value of the initial
solution is only improved by two units with the best simulated annealing algorithm while
the genetic algorithm with a large population size can improve the function value by some
hundreds of units. (On the other side, there are also instances for this type, where simulated
annealing is better then the best genetic algorithm by several hundreds of units.) In a weaker
form, this also holds for problem type (w2,t2,r2,d1). Excluding these outlier instances, the
results of the genetic algorithms improve with the population size and particularly
algorithm GA(100) can be recommended for problems with n = m. However, from an overall
point of view, all three genetic algorithms are superior to fast simulated annealing runs (see
also Andresen et al. (2008) for mean flow time minimization).

A different behavior can be obtained for the problems with n > m. For these problems, the
quality of the solutions of the genetic algorithm decreases with increasing population size in
terms of the performance index. Moreover, the performance indices of the genetic
algorithms are smaller than those obtained for fast simulated annealing algorithms (and

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 71

they are substantially smaller than those for the best simulated annealing algorithms). For
the best genetic algorithm GA(10), the largest performance index for the problems with d1
and d2 is 84 for problem type (w2,t2,r1,d2) for the instances with n = 15 and m = 10 (note
that some of the problems with d3 are easy so that larger indices have been obtained) while
small performance indices have been obtained in particular for the problems with n = 30.

(w,t,r,d) n<m n=m n>m

10 50 100 10 50 100 10 50 100
()| 67 65 63 | 83 104 111 | 37 25 12
()| 67 67 64 64 80 89 34 24 13
()| 100 100 100 60 66 62 | 42 34 24
() | 68 73 76 77 103 100 38 27 16
()| 67 74 76 82 103 105 38 27 17
() | 100 100 100 | 74 78 88 54 43 36
(Y[67 77 84 | 94 145 149 | 43 31 19
()| 60 75 74 | 66 111 122 | 42 33 21
() | 100 100 100 | 74 93 101 49 47 38
()| 76 98 99 107 150 166 47 39 21
(wl,t2,r2,d2) | 73 98 102 | 96 146 166 43 38 26
(wl,t2,r2,d3) | 100 100 100 | 78 92 101 62 59 55
(w2,t1,rl,dl) | 67 67 65 60 72 76 46 25 12
()

()

()

()

()

()

()

()

()

()

()

wl,tl,rl,d1
wl,t1l,rl,d2
wl,t1,r1,d3
wl,t1,r2,d1
wl,t1,r2,d2
wl,t1,r2,d3
wl,t2,r1,d1
wl,t2,rl,d2
wl,t2,r1,d3
wl,t2,r2,d1

w2,61r1,d2) | 62 66 63 | 45 52 60 | 49 30 14
w2,t1,r1,d3) | 100 100 100 | 55 57 60 | 49 35 22
w2,t1,r2,dl) | 70 74 75 | 77 83 86 | 42 25 13
w2,61r2,d2) | 68 81 78 | 71 79 88 | 44 28 14
w2,t1,r2,d3) | 100 100 100 | 72 79 81 | 55 43 34
w2,t2r1,dl) | 61 75 70 | 8 92 90 | 55 35 18
w2,t2r1,d2) | 70 76 83 | 76 8 99 | 55 39 20
w2,t2r1,d3) | 100 100 100 | 84 104 97 | 57 46 41
w2,t2r2,d1) | 78 97 100 | 108 139 227 | 59 37 20
w2,t2r2,d2) | 80 94 102 | 93 577 363 | 56 43 25
w2,t2r2,d3) | 100 100 100 | 8 96 97 | 66 62 57

| average [79.2 85.6 86.5|77.5 116.1 1159 [48.3 36.5 245 |

Table 4. Results of the genetic algorithms

More precisely, even for the best genetic algorithm GA(10), for the problems with n = 30 and
m = 20 a smallest performance index of 15 is obtained for problem type (w1,t2,r2,d2), for the
problems with n = 30 and m = 15 the smallest index is 21 for problem type (w1,t1,r1,d3) and
for the problems with n = 30 and m = 10 the smallest index is 29 for problem type
(w1,t2,r1,d3). In general, among all 72 combinations of a problem type and one of the pairs

72 Simulated Annealing

(n,m) with n = 30, the indices of algorithm GA(10) are smaller than 40 for 48 of the 72 cases,
among them 32 cases with wl. Moreover, the smallest performance index of algorithm
GA(100) is even only 3 for the problems with n = 30 and m = 15 and type (w1,t1,r1,d2). The
superiority of good simulated annealing variants becomes stronger for problems with an
increasing number of jobs.

The results of the comparison of simulated annealing and genetic algorithms correspond to
those obtained in Andresen et al. (2008) for problem type (w1,tl,r1,d1), where genetic
algorithms are competitive for problems with n < m while simulated annealing was clearly
better for instances with n > m and a large ratio of n/m.

5. Concluding remarks

Often in the literature, a particular type of a problem is considered (e.g. processing times are
uniformly distributed in the interval [1, 100]) and then the parameters of a simulated
annealing algorithm are tuned for this concrete situation. The use of such an algorithm is
then recommended for arbitrary instances of the problem under consideration. However, in
general it is not a priori clear that this particular tuning is also recommendable for other
types of instances of the problem when, for instance, processing times have a substantially
different range, due dates are set in another way, or job weights are very different, etc. One
of the major goals of this study was to find out which parameters of open shop problems

with the minimization of total weighted tardiness have a strong influence and which have a

smaller influence on the selection of an appropriate simulated annealing algorithm.

From our computational study for problems with up to 30 jobs and 30 machines, we can

give the following conclusions and recommendations:

e The concrete data of the problems have a substantial influence on the design of an
appropriate simulated annealing algorithm. While for makespan minimization in an
open shop only square problems with n = m have been considered in the literature
(because they are the hardest problems), the ratio of n and m has an influence on the
performance of particular simulated annealing and genetic algorithms for problems
with sum criteria. As in Andresen et al. (2008), we have evaluated the results separately
for the casesn <m,n=mand n > m.

e For problems with n < m including positive due dates, only instances with a tightness
factor up to approximately 1.1 are of interest. Even for the problems with a tightness
factor between 1.0 and 1.1, the final function values are rather small and therefore, the
corresponding solutions are close to the optimal ones. For larger tightness factors,
problems are very easy in the sense that already simple dispatching rules construct
solutions with a function value equal or close to zero. For problems with n > m,
instances with larger tightness factors are of interest. If n = 30 and m = 10 and due dates
according to d3 are considered, the objective function values of the best solution are still
around 10,000 for the problems with w1 and around 30,000 for the problems with w2.

e In terms of the objective function value, the absolute improvements of the average
function values of the final solution over the average values of the initial solutions are
usually larger for the problems with n > m (where these improvements are even up to
2,800 units) while for problems with n < m, these improvements are smaller (always less
than 130 units for all problem types and pairs (1,m)). It appears that problems with n <

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 73

m are easier to solve while problems with n > m are the hardest ones. This coincides
with the observations made in Andresen et al. (2008), where it has been found for the
problems of type (wl,tl,rl,dl) that the objective function values of the heuristic
solutions are close to a lower bound for problems with n < m. If we consider percentage
improvements of the objective function values, they are higher for the problems with d2
and d3 (where the function values of the initial solutions are considerably smaller).

e In general, the choice of a good initial solution strongly influences the quality of the
iterative solution finally obtained. One possibility is to generate nondelay schedules by
priority dispatching rules. Among the six rules used in our study, the LPT rule can be
recommended for problems with n < m, the WSPT, EDD and FCFS rules are good for
particular types of problems with n > m, and for problems with n = m, all the six rules
considered in our study contribute good initial solutions. This confirms and generalizes
the results from Brésel et al. (2008). Since these algorithms are very fast, the application
of several rules and the selection of the best solution can be recommended to generate
appropriate initial solutions.

e The choice of an appropriate neighborhood has probably the largest influence on the
quality of a simulated annealing algorithm. For most problem types considered in this
study, the use of the SHIFT neighborhood is strongly recommended and superior to
API-based neighborhoods. An exception are the following situations when using short
runs with stopping criterion S1 or S3. For problems with n < m and t2, the results both
with the API- and the 3-API neighborhoods are better than with the SHIFT
neighborhood. In addition, for large problems with n =2 m > 20, the API neighborhood
and also the 3-API neighborhood become superior for more and more problem types.
On the other side, for long runs with stopping criterion S2, the API neighborhood
becomes superior to the SHIFT neighborhood only for the large square problems with n
= m = 30, in particular for the problems with w1 and also for most problems with w2
and d3. Moreover, the algorithms using the crit-SHIFT neighborhood are not
competitive for almost all problems.

e The selection of an appropriate simulated annealing algorithm does not essentially
depend on the concrete pair (1,m) within each of the three groups n < m, n =m and n >
m with the exceptions discussed in the previous item. However, the observed trends for
the problems with n < m are stronger if n/m is small, and the trends for the problems
with n > m are stronger if n/m is large. On the other side, if n/m is close to one, the
observations are more similar to the case n = m. This corresponds to the results in
Andresen et al. (2008) for problems with minimizing mean flow time.

e For some problems it is essential to start with an extremely small temperature. This is
particularly true for problems with w1, especially for short runs. On the other side, the
choice of an appropriate initial temperature is not so important for the problems with
w2. In particular, for the long runs with stopping criterion S2, the use of a small initial
temperature is advantageous for problems with w1l while for problems with w2,
variants with a larger initial temperature become more competitive. Moreover, the use
of a low initial temperature is superior for most problems with n > m as well as for the
problems with w1, t1, arbitrary values of n and m and arbitrary stopping criterion.

74 Simulated Annealing

¢ The number of cooling cycles does not have a substantial influence on the quality of the
simulated annealing algorithms. Among the recommended algorithms, there are
variants with one and five cooling cycles. From an overall point of view, the use of five
cooling cycles leads to slightly better results, in particular for the problems with n < m.

e As one can expect, the long runs with stopping criterion S2 obtain the best results.
However, when using long runs with the API and 3-API neighborhoods, for most
problem types the results are nevertheless worse than in the case of short runs with the
SHIFT neighborhood. This is partially opposite for problems with n < m and t2.
Variants with the flexible stopping criterion S3 are not superior to short runs with
stopping criterion S1 for the majority of problem types. An exception are most types of
the hard problems with n > m, in particular problems with w2.

e From an overall point of view, a variant using a good initial solution and the SHIFT
neighborhood with a small initial temperature of two and one or five cooling cycles can
be recommended among the simulated annealing algorithms for problems with up to
30 jobs and 30 machines. However, as mentioned above, for the problems with n > m >
20, the API neighborhood becomes better. It can be conjectured that this trend becomes
even stronger for problems with n 2 m as the number of machines increases further.

e When comparing fast simulated annealing and the genetic algorithms used in our
study, we have to distinguish the cases n < m and n > m. While for problems with n <m
the genetic algorithm with a large population size often gets a better solution than short
and sometimes even the best simulated annealing algorithm, this is not true for the
problems with n > m. Here a good fast simulated annealing algorithm is usually
superior to the best genetic algorithm (and the genetic algorithms perform extremely
poor in comparison to the long simulated annealing algorithms).

The algorithms presented in this paper are included into the program package LiSA - A

Library of Scheduling Algorithms, version 3.0 (see http:/ /lisa.math.uni-magdeburg.de). For

a free use of the algorithms discussed in this paper and the whole package, the interested

reader can contact the LiSA team under the above website. A table with the seeds for

generating the open shop instances used in this paper can also be obtained.

6. References

Achugbue, J.O.; Chin, F.Y.: Scheduling the Open Shop to Minimize Mean Flow Time, SIAM
J. on Computing, Vol. 11, 1982, 709 - 720.

Andresen, M.; Brasel, H,; Morig, M.; Tusch, J.; Werner, F.; Willenius, P.: Simulated
Annealing and Genetic Algorithms for Minimizing Mean Flow Time in an Open
Shop, Math. Comp. Modelling (to appear, doi 10.1016/j.mcm.2008.01.002).

Blazewicz, J.; Pesch, E.; Sterna, M.; Werner, F.: Open Shop Scheduling with Late Work
Criteria, Discrete Appl. Math., Vol. 134, 2004, 1 - 24.

Brésel, H.: Matrices in Shop Scheduling Problems, in: Perspectives on Operations Research -
Essays in Honor of Klaus Neumann (ed. by M. Morlock, C. Schwindt, N.
Trautmann and J. Zimmermann), Deutscher Universitdts-Verlag, Wiesbaden, 2006,
17 - 43.

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria 75

Bréasel, H.,; Herms, A, Morig, M., Tautenhahn, T, Tusch,], Werner, F.: Heuristic
Constructive Algorithms for Open Shop Scheduling to Minimize Mean Flow Time,
European J. Oper. Res., Vol. 189, 2008, 856 - 870.

Brésel, H.; Tautenhahn, T.; Werner, F.: Constructive Heuristic Algorithms for the Open-Shop
Problem, Computing, Vol. 51, 1993, 95 - 110.

Brightwell, G.; Winkler, P.: Counting Linear Extensions, Order, Vol. 8, 1991, 225 - 242.

Brésel, H.; Hennes, H.: On the Open-Shop Problem with Preemption and Minimizing the
Average Completion Time, European J. Oper. Res., Vol. 157, 2004, 607 - 619.
Brucker, P.; Hurink, J.; Jurisch, B.; Wostmann, B.: A Branch-and-Bound Algorithm for the

Open-Shop Problem, Discrete Appl. Math., Vol. 76, 1997, 43 - 59.

Du, J.; Leung, J.Y.T.: Minimizing Mean Flow Time in Two-Machine Open-Shops and Flow-
Shops, Journal of Algorithms, Vol. 14, 1990, 24 - 44.

Gueret, C.; Prins, C.: A New Lower Bound for the Open-Shop Problem, Annals Oper. Res.,
Vol. 92,1999, 165 - 183.

Holland, J.A.: Adaptation in Natural and Artificial Systems, Ann Arbor, University of
Michigan, 1975.

Kubiak, W.; Sriskandarajah, C.; Zaras, K.: A Note on the Complexity of Open Shop
Scheduling Problems, INFOR, Vol. 29, 1991, 284 - 294.

Laborie, P.: Complete MCS-Based Search, Application to Resource Constrained Project
Scheduling, Proceedings of International Joint Conference on Artificial Intelligence,
Vol. 19, 2005, 181 - 186.

Liaw, C.-F.: Applying Simulated Annealing to the Open Shop Scheduling Problem, IEE
Transactions, Vol. 31, 1999, 457 - 465.

Liaw, C.-F.: Scheduling Two-Machine Preemptive Open Shop Shops to Minimize Total
Completion Time, Comput. Oper. Res., Vol. 31, 2004, 1349 - 1363.

Liaw, C.-F.: Scheduling Preemptive Open Shops to Minimize Total Tardiness, European J.
Oper. Res., Vol. 162, 2005, 175 - 183.

Liaw, C.-F.; Cheng, C.-Y.; Chen, M.: The Total Completion Time Open Shop Scheduling
Problem with a Given Sequence of Jobs on One Machine, Comput. Oper. Res., Vol.
29, 2002, 1251 - 1266.

Liu, C.Y,; Bulfin, R.L.: On the Complexity of Preemptive Open-Shop Scheduling Problems,
Oper. Res. Lett., Vol. 4, 1985, 71 - 74.

Liu, C.Y.; Bulfin, R.L.: Scheduling Ordered Open Shops, Comput. Oper. Res., Vol. 14, 1987,
257 - 264.

Prins, C.: An Overview of Scheduling Problems Arising in Satellite Communications,
Journal Oper. Res. Soc., Vol. 40, 1994, 611 - 623.

Queyranne, M.; Sviridenko, M.: New and Improved Algorithms for Minsum Shop
Scheduling, Proceedings of the 11th annual ACM-SIAM Symposium on Discrete
Algorithms, San Francisco/ USA, 2000, 871 - 878.

Queyranne, M.; Sviridenko, M.: Approximation Algorithms for Shop Scheduling Problems
with Minsum Objective, Journal of Scheduling, Vol. 5, 2002, 287 - 305.

Taillard, E.: Benchmarks for Basic Scheduling Problems, European J. Oper. Res., Vol. 64,
1993, 278 - 285.

Tamura, N.; Taga, A,; Kitagawa, S.; Banbara, M.: Compiling Finite Linear CSP into SAT,
Proceeding of the 12th International Conference on Principles and Practice of

76 Simulated Annealing

Constraint Programming (CP’06), Lecture Notes in Computer Science, Vol. 4204,
Springer, 2006, 590 - 603.

Werner, F.: On the Solution of Special Sequencing Problems, Ph.D. Thesis, TU Magdeburg,
1984 (in German).

Werner, F.; Winkler, A.: Insertion Techniques for the Heuristic Solution of the Job Shop
Problem, Discrete Appl. Math., Vol. 50, 1995, 191 - 211.

Yang, Q; Sun, J.; Zhang, J.; Wang C. : A Hybrid Discrete Particle Swarm Algorithm for
Open-Shop Problems, Lecture Notes in Computer Science, Vol. 4247, 2006, 158 -
165.

4

Real Time Multiagent Decision Making by
Simulated Annealing

Dawei Jiang and 2Jingyu Han

INational University of Singapore,

2Nanjing University of Posts and Telecommunications,
1Singapore

2China

1. Introduction

In this chapter, the application of Simulated Annealing (SA) algorithm in real time
multiagent coordination problem is described. A Multiagent System (MAS) consists of a
group of agents that interact with each other. Research in MAS aims to provide theories and
techniques for agents’ behavior management. The focus of this chapter is on fully
cooperative MAS, where all the agents share a common long-term goal. Examples include a
team of robots who play football against another team or a group of rescue robots that, after
an earthquake, must safely rescue the victims as soon as possible. The challenging issue in
such systems is Coordination: the policy to insure that the individual action of each agent
can generate the optimal joint action as a whole.

Coordination in MAS has been explored from many aspects such as game theory (Osborne
& Rubinstein , 1999), communications (Carrier & Gelernter, 1989), social conversions
(Boutilier, 1996) and learning(Tan, 1997). Unfortunately these approaches have some flaws.
First, in the worst case, these approaches degrade to a naive solution which searches the
whole joint action space whose size grows exponentially with the number of agents (It is
called “curse of dimensionality”). Therefore, they do not scale well for large systems.
Second, many of the approaches report an answer only when all the possible statuses have
been considered. This is not suitable for real time case. In many real time scenarios such as
robot football, rescue robots, etc., it is often needed that decision making algorithm returns
a well enough answer at any time.

Recently, there is some work on how to decrease the joint action space by coordination graph
(CG) (Guestrin & Venkataraman , 2002). The insight in CG is that in MAS only a small part
of agents need to coordinate their actions while others can still act individually. Thus, the
global joint payoff function, the representation of the global joint coordination dependencies
among all agents, is approximated as a sum of local payoff functions, each of which
represents the local coordination dependencies between a small sub-group of the agents.
Then, the agents use a variable elimination (VE) algorithm to determine their optimal joint
action. Unfortunately, the worst time complexity of VE grows exponentially with the
number of agents. Moreover, VE only reports results when the whole algorithm terminates,
therefore it is unsuitable for real-time systems. Max-plus (MP) algorithm is proposed as an

78 Simulated Annealing

approximate alternative to VE (Kok & Vlassis, 2005). MP can converge to the optimal
solution for tree-structured graphs and also find near optimal solutions in graphs with
cycles, but it limits the local payoff functions to contain at most 2 agents.

In this chapter, An Simulate Annealing (SA) based algorithms to address aforementioned
coordination problem is presented. This approach has two main benefits. First, the time
taken by the algorithm grows polynomial with the number of agents. Second, the algorithm
can report a near-optimal answer at any time.

The chapter is organized as follows. Section 2 describes the problem setting and
representative work on how to solve multiagent decision problem, especially on Variable
Elimination (VE) approach. Section 3 introduces the general steps and key elements of SA
algorithms, which is employed in later sections. Section 4 gives how to effectively find a
satisfactory answer in any time for multiagent decision problem by SA algorithm. In Section
5, the performance of SA algorithm on multiagent decision problem is evaluated by
comparing it with comparable approaches followed by conclusion and future work.

2. Problem setting and variable elimination approach

Multiagent decision making problem can be formally describe as follows.

Given a group of agents G={G1,G,,...,G,}, they are interacting with each other together during a long
time sequence {ty,ta,...,ta} to reach final goal . At each time t;, each agent G; selects an individual
action a; from his own action set A; (Thus the joint policy space is A=xA;) based on payoff function
v(a) and goes into next time ti1. At each time, the decision making problem is to find the optimal
joint action a* that maximize the global payoff function v(a). That is to say, a*=maxarg, v(a).

To overcome the curse of dimensionality, the global joint payoff function is decomposed
into a linear combination of s set of local payoff functions, each of which is only related to a
small number of agents. For example, in RoboCup, only the players that are close to each
other have to coordinate their actions to perform a pass or a defend. In some situations, this
approach can get a very compact representation for coordination dependencies among
agents. Furthermore, such representation can be mapped onto a coordination graph G=(V,E)
according to the following rules: each agent is mapped to a node in V, and each
coordination dependency is mapped to an edge in E. Then Variable Elimination (VE) can be
used on G to determine the optimal joint actions.

Variable Elimination is also called bucket elimination. It is first used for reasoning in Bayes
network. It can also be effectively used to solve the multiagent decision making problem.
The technical steps include two passes. In the first pass, by enumerating all the possible
combinatorial joint actions of his neighborhood, each agent conditionally computes his own
optimal action and sends the result to the entire neighborhood. Then, the agent will be
eliminated from the system. This process will continue until only one agent remains in the
system. In the second pass, all agents do the entire process in reverse elimination order. In
the process every agent can find his own optimal decision based on his neighborhood
agent’s behavior. An example is taken to illustrate the execution of VE algorithm. Suppose
that the system has 4 agents with each one having 4 different actions, then the number of
joint actions is 44=256, and global joint payoff function can be decomposed as:

V(a)=v1(a1,a2)+v2(a2,a4)+v3(a1,a3) (1)

Fig.1 shows the initial corresponding coordination graph. The key idea in VE is that, rather
than enumerating all possible joint actions and summing up all functions to do

Real Time Multiagent Decision Making by Simulated Annealing 79

maximization, each time only one variable is optimized. The example begins with
optimization for agent 1. Agent 1 collects all local payoff functions including its own, i.e., v1
and v3 then does maximization. Hence, it can be obtained that

max, v(a)=Max,, .. ,, {02(a2,a2)+ MAX a1 [01(a1,32) +v3(a1,5)]})

After enumeration of possible action combinations of his neighbors, i.e., agent 2 and agent 3,
agent 1 conditionally returns his best response and yield a new function ei(a2,a3) =
maxan[vi(a1,a2)+v3(a,a3)]. Its value at the point a, a3 is the value of the internal max
expression in equation (2). At this time, agent 1 is eliminated from G. The global joint payoff
function is rewritten as:

max.o(a)= Max,, ,. ,, {va(aza)tei(azas)} 3)

Now fewer agents remain. Next, agent 2 does the same procedure. After collecting va(a2,a4)

Gl
G2 G3
G4

Fig.1. Initial coordination graph

and e1(a2,a3), agent 2 produces a conditional strategy based on the possible actions of agent 3
and agent 4, and returns his choice, i.e., ex(a3,a1) = maxp {v2(a2,a4)+e1(a2,a3)} to the system,
then is eliminated. The global payoff function only contains 2 agents now:

max,v(a)= Max,, ,, {ex(asas)} 4)

Agent 3 begins to do optimization. Enumerating actions of agent 4, he reports his own
choice and gives a conditional payoff e;(as)= max_, ex(a3,a4). Finally, the only remaining
agent 4 can simply choose his optimal action: a4*=arg max , e3(a4).

In the second pass, all agents do the entire process in reverse elimination order. To fulfill
agent 4's optimal action a4¥, agent 3 must select a3*=argmax_, e3(a4*). Then agent 2 can make
a decision ay*=argmax , e» (a3%,a4*). Finally, agent 1 does ay*=argmax_ e1 (a2%,a3%) to choose

his optimal action appropriately. The whole procedure needs only 4x4+4x4+4=36 iterations
which is much smaller than 256 iterations of the whole joint action space.

The outcome of VE is independent of the elimination order and always gives the optimal
joint action (Guestrin, 2003). However, the running speed of VE is depended on the
elimination order and exponential in the induced width of the coordination graph (Guestrin

80 Simulated Annealing

& Venkataraman, 2002) (Dechter,1999). Finding the optimal elimination order for VE is a
well known NP-complete problem (Arnborg et al., 1987). Thus, in some cases and especially
in the worse case, the time consumed by VE grows exponentially with the number of agents.
Furthermore, VE can not give any useful results until the termination of the complete
algorithm. Therefore, it is not suitable for real time multiagent decision making scenario. So
in the following graph how to use simulated annealing (SA) approach to circumvent such
limitations is addressed in detail.

3. Simulated annealing algorithms

The simulated annealing algorithm (also called as monte carlo annealing or probabilistic
hill-climber), inspired by statistical mechanics, is very popular for combinatorial
optimization. In this area efficient methods are developed to find minimal or maximal
values for a function of a number of independent variables. The simulated annealing
process executes by ‘melting’ the system being optimized at a high effective temperature at
first, and then lowering the temperature by slow stages until the system ‘freezes’ and no
further change occurs. In the following subsection the generic procedure to solve
combinatorial optimization is introduced first, and then the essential factors in designing SA
algorithm are analyzed.

3.1 Generic procedure to solve combinatorial optimization by SA

Given a generic function to be optimized f: (x1,x2,...,%j,...xn) R+, where x;eS (here S is the

domain) is a component of vector X and N(xj)€ S is the neighborhood of x;. To find the

maximal or minimal result, SA algorithm executes as the following 4 steps.

1. Initial temperature Tmax and initial answer X (0) is given.

2. Based on X (i), a new resultant X’ which contains a certain newly produced component
x" eN(x(j)) is obtained.

3. Whether X’ will be accepted as a new answer X (i+1) depends on the probability

1 iff(X) < f(X(©))
P(X())—X)= SXO-F (XY ®)

e K otherwise

In other words, If f (X') is less than f (X(i)) then X(i+1)=X’, otherwise X" will be accepted as X
JX)= fXG)

(i+1) with the probability of e r . If X’ is rejected, the control flow goes to step 2

again until an acceptable X (i+1) is found.

4. Step 2 and 3 is repeated until a final status defined before reached.

It can be seen that the process of SA is a discrete status sequence. At each temperature T;, its

new status X (i+1) only depends on X (i) and has no relevance with X (i-1), X (i-2)..., X (0).
Thus it is a Markov process.

3.2 Essential factors for designing simulated annealing algorithm
When a simulated annealing algorithm is designed, six essential factors should be taken into
consideration.

Real Time Multiagent Decision Making by Simulated Annealing 81

3.2.1 Neighbor function (status production function)

A neighbor function is used to generate a new candidate answer based on current status.
When a neighbor function is designed, it should ensure that all the candidate answers in the
state space can be reachable. In general, designing a neighbor function focuses on two key
aspects, which are the rule of producing candidate answers and the distribution of
candidate answers. The former determines how to produce a candidate answer based on
current answer. The latter determines the probability of newly produced different candidate
answers. Usually production rule of neighbor function is devised according to concrete
problem and distribution of candidate answers takes uniform distribution, normal
distribution, exponential distribution and Cauchy distribution .etc.

3.2.2 Status transition probability (acceptance probability)

Status transition probability is the likelihood that one feasible answer, denoted as xXua,

transits to another feasible answer, denoted as xnew . In other words, it is the chance that a

new feasible answer will be accepted as current answer. As a rule, the status transition

probability observes the followings.

1. At the same temperature, the chance to accept the candidate answer which will
decrease objective function value is larger than that which will increase objective
function value.

2. As the temperature declines, the chance to accept the answers that will decrease
objective function value should gradually become smaller and smaller.

3. As the temperature is approaching zero, only the answers that make objective function
value decrease can be accepted.

In most of the cases, Metropolis rule as equation (5) is used.

3.2.3 Cooling function

Cooling function determines how the simulated annealing proceeds from a high
temperature T, to lower temperature by stages. If the temperature decreases slow enough,
the objective function value can concentrate on the global minima or maxima with an
expensive cost. If the temperature decreases too fast, the global minima or maxima will not
be reachable. Let T (t) be the temperature at time ¢. The classical cooling function usually
takes T () = Tmax/Ig(1+f) and the fast cooling function usually takes T(t) = Tmax/ (1+t). These
two types of cooling function can gurantee the algorithm converge to the global minima or
maxima.

3.2.4 Initial temperature

Many experiments show that the higher the initial temperature T(0) is, the greater the

chance of obtaining high quality final answer is. But the time consumed is also longer.

Therefore, to get a better initial temperature Tma., both optimization effectiveness and

efficiency should be taken into consideration. Usually, the following several approaches can

be applied.

1. At first, a group of statuses is obtained by uniform sampling. Then, the initial
temperature T, is defined as the variance of all the statuses’ objective function values.

2. Atfirst, a group of statuses is random obtained. Then, the biggest difference of objective
function values, denoted as | Amax| , is obtained by comparing every two statues.

82 Simulated Annealing

Finally, the initial temperature T}, is determined by a function which takes | Anax| as
parameter.

3. The initial temperature Ty, is determined based on engineering experience for some
specific problems.

3.2.5 Metropolis sampling rule

This rule is used to determine how many candidate answers will be produced at a certain

temperature. The following policies are widely used.

1. Test whether the average of object function values is stable or not. If so, the sampling
will continue, otherwise the sampling will stop.

2. Test whether objective function value difference in continuous steps is small enough. If
so, the sampling will continue, otherwise, the sampling will stop.

3. The sampling is constrained by fixed number of steps.

3.2.6 Termination rule

It is used to determine when the simulated annealing algorithm ends. It includes the

following approaches.

1. An ending temperature threshold is set. If the current temperature is below the
threshold, the simulated annealing stops.

2. The number of iteration is set. The simulated annealing process will proceed according
to the times of iterations.

3. The simulated annealing will end if the objective values do not change in a series of
continuous steps.

4. The termination depends on whether the system entropy is stable or not.

4. Multiagent decision making by simulated annealing algorithm

It is natural to apply SA to multiagent decision making problem since the global payoff
function needs to be optimized via a number of independent action variables of each agent.
The process works as follows. First, the global payoff function is decomposed into a number
of local terms. Then, global payoff function will be rewritten as the linear combination of
the local terms to avoid the curse of dimensionality. That is to say, given n agents, its global
payoff function can be decomposed as follows:

v(a)= ZG:v,.(ai)-i- Z;;vy.(ai,a/)-i-...-%z,;vw (a,a,a,)+... (6)
i e i

Here vj(a;) represents the payoff that an agent contributes to the system when acting
individually, e.g. dribbling with the ball. v;(i,j) denotes the payoff of a joint action between
agent i and j, and vr(a;,a;,ar) depicts another coordination action involving three agents